Opinion
Science Opinion

STEM Is Failing People of Color. What Educators Can Do

Students, especially students of color, need fresh incentives to pursue STEM fields
By Ebony O. McGee — January 25, 2024 5 min read
Illustration of a scientist holding a giant test tube.
  • Save to favorites
  • Print

Today’s K-12 students are facing an existential crisis, and they are painfully aware of it: Climate change is scarring the planet—a consequence of the industrial economies that have developed over centuries. Western science and technology have powered industrial development, exploiting fossil fuels, which are a major source of anthropogenic climate change. STEM industries must be held accountable. STEM fields need a transformation from the K-12 classroom to the boardroom.

Teachers, parents, and policymakers have a vested interest in ensuring a livable environment for our children. But if the adults cannot meet the challenge of reversing environmental degradation, then we’re preparing our students for a grim future.

The challenges for STEM—science, technology, engineering, and math—for students of color are especially stark. For generations, communities of color have disproportionately borne the brunt of environmental hazards, a form of racism caused by industrial disregard for human life. There are too many cases that prove it. Here are just two examples: More than 500 abandoned uranium mines close to the Navajo Nation have led to the deadly contamination of the environment, increasing the risk of cancer, kidney disease, and other health problems. An 85-mile section of the Mississippi River in Louisiana, known as “Cancer Alley” where 40 percent of the residents are African American, is home to 200-plus petrochemical plants and refineries, emitting pollution 47 times the acceptable Environmental Protection Agency rate.

Ask yourself which side of town includes the sewage works, mines, landfills, power stations, major roads, and emitters of airborne particulate matter? Rarely is it middle-class white neighborhoods. Many people of color, especially those with lower incomes, live in neighborhoods that are hazardous and toxic.

Yet, we still ask students of color to show up to school, navigate through carcinogens on their way in, and somehow perform academically—even as their exposure to toxins affects academic outcomes. In spite of every obstacle, these students achieve while enduring disproportionately poorer respiratory health and overall physical fitness, higher levels of psychological stress, and prolonged exposure to air pollutants—all of which negatively affect their cognitive development.

Environmental racism not only impacts the way communities of color live their daily lives but also how many of those days they get. According to the American Cancer Society, for most cancers, African Americans “have the highest death rate and lowest survival rate of any racial or ethnic group” in the country, even as the gap is narrowing between African Americans and white people. More specifically, the cancer society found that Black men have the highest overall incidence of cancer and Black women outpace their white, female counterparts in per capita cancer rates.

This does not bode well for our young people. It also raises questions about the current incentives that students, particularly those of color, have for entering the STEM fields.

What must we do to change this narrative, to create fresh incentives for students who might otherwise turn their backs on STEM opportunities?

To start, there must be a cultural shift within STEM fields across industry leaders and in education. And we need a reevaluation of practices and policies governing STEM and how to promote careers in those fields.

At the industry end, policymakers and legislators need to reflect on the sobering realities and respond proactively. The implementation of strict environmental policies, requiring regulations and zoning laws designed to protect vulnerable communities from the harmful effects of environmental racism should be prioritized. The role of public opinion and its nuances is critical in shaping climate policy. Black voters and voters of color are massively underrepresented in national surveys on climate change, creating a distorted picture that prioritizes the preferences of white voters—a significant oversight, given that communities of color are often the most impacted by climate impacts. And recent research reflects that Black voters are not only more concerned about climate change than other groups, it ranks higher than their other concerns.

The STEM establishment needs to consider who it is hiring, other than white men: Women make up 34 percent of the STEM workforce compared with men. And consider the racial composition of Big Tech company teams. According to a 2022 National Center for Women & Information Technology report, Black employees constitute just 6.3 percent of the technical workforce. Major tech companies like Google, Microsoft, Facebook, and Apple continue to employ Black STEMmers at rates lower than their representation in the general population—between 1.5 percent and 9 percent vs. roughly 13.6 percent respectively.

This poor record on diversity harms us all.

Diversity of thought, background, race, gender, and ability are not just nice to have, they are a necessity for innovation. If we want a new STEM landscape, one that prioritizes the planet and people over profits, one that invites Black students and students of color in, then we need to start with the first years of STEM education. The full transformation of industries does not end with adults, whose values are already established. It starts with STEM students.

STEM educators can help students develop strong values around equity and inclusion, for example, by recognizing the historic contributions of STEMmers of color like Robert Bullard, known as the “father of environmental justice.” Bullard used scientific and statistical analysis to prove the disproportionate impact of harmful environmental policies on Black communities and other communities of color. Thomas Mensah, one of the innovators of fiber optics technology, is known for revolutionizing telecommunication and information technologies and creating more energy-efficient technology infrastructure. Gladys West played a crucial role in developing the calculations that enhance the accuracy of GPS technology, which is now used to monitor environmental and conservation efforts and disaster management and mitigation strategies.

Educators can be aware of—and challenge—stereotypes that claim STEM for boys only or for white or Asian students more than others. And they can lead by example, examining their own practices and modeling behaviors that include all students.

Without radical change beginning at the K-12 level, STEM fields will fall short of creating the innovations that will make our world better, safer, and cleaner. The change begins when we see new faces in the C-suite, among first-generation scholars leading research, and when people of all shades and colors have a valued and respected seat at the table. But this radical change also begins with small steps in K-12 STEM classrooms.

A fight for diversity in STEM education is a fight for its future as a bridge to lifesaving innovation. And that is a battle I’d fight any day.

Events

School Climate & Safety K-12 Essentials Forum Strengthen Students’ Connections to School
Join this free event to learn how schools are creating the space for students to form strong bonds with each other and trusted adults.
This content is provided by our sponsor. It is not written by and does not necessarily reflect the views of Education Week's editorial staff.
Sponsor
Mathematics Webinar
Equity and Access in Mathematics Education: A Deeper Look
Explore the advantages of access in math education, including engagement, improved learning outcomes, and equity.
Content provided by MIND Education
This content is provided by our sponsor. It is not written by and does not necessarily reflect the views of Education Week's editorial staff.
Sponsor
Assessment Webinar
Standards-Based Grading Roundtable: What We've Achieved and Where We're Headed
Content provided by Otus

EdWeek Top School Jobs

Teacher Jobs
Search over ten thousand teaching jobs nationwide — elementary, middle, high school and more.
View Jobs
Principal Jobs
Find hundreds of jobs for principals, assistant principals, and other school leadership roles.
View Jobs
Administrator Jobs
Over a thousand district-level jobs: superintendents, directors, more.
View Jobs
Support Staff Jobs
Search thousands of jobs, from paraprofessionals to counselors and more.
View Jobs

Read Next

Science Q&A The Skill Students Need to Find Reliable Scientific Information
A high school environmental science teacher shares how she incorporates media literacy into her lessons.
5 min read
Icons on theme of climate change.
bsd555/iStock/Getty
Science Opinion High-Quality Science Instruction Should Be 3-Dimensional. Here's What That Looks Like
Cookie-cutter lab assignments that ask students to follow explicit instructions to reach the "right" conclusion limit learning.
Spencer Martin
4 min read
Screen Shot 2024 02 07 at 1.23.09 PM
Canva
Science The NAEP Science Exam Is Getting a Major Update. Here's What to Expect
For the first time in 20 years, "the nation's report card" is updating how it gauges students' understanding of science.
4 min read
Yuma Police Department forensic technician Heidi Heck shows students in Jonathan Bailey's fifth grade science class at Barbara Hall Elementary School how fingerprints show up under a special light during a presentation about forensic science on March 1, 2023.
Yuma Police Department forensic technician Heidi Heck shows students in Jonathan Bailey's fifth grade science class at Barbara Hall Elementary School how fingerprints show up under a special light during a presentation about forensic science on March 1, 2023.
Randy Hoeft/The Yuma Sun via AP
Science This District Hopes Seeing What AI Can Do Will Spur More Students to Take Computer Science
Districts including Florida's Broward County put an AI twist on coding activities during an annual computer science event.
2 min read
Students creating programs while using laptop
E+ / Getty