Opinion
Science Opinion

Where Are the ‘T’ and ‘E’ in STEM?

June 13, 2008 3 min read
  • Save to favorites
  • Print

Increasing attention is being paid to science, technology, engineering, and math education and the roles of those so-called STEM subjects in helping students develop the skills they need to compete in a global economy. That topic is the focus of Education Week’s recently issued Technology Counts 2008 report, for example. But some ed-tech experts are concerned that policymakers are overemphasizing the math and science parts of STEM at the expense of technology and engineering. A recent online chat on edweek.org brought together experts to talk about how technology and engineering education fit into the big picture. The guests were Raymond V. Bartlett, the co-director of Strategies for Engineeering Education, K-16; Yvonne Spicer, the director of the National Center for Technological Literacy; and Mary Ann Wolf, the executive director of the State Educational Technology Directors Association, or SETDA.

View the full transcript. Here are edited excerpts from the discussion:

How can technology education help schools meet No Child Left Behind Act goals?

Mary Ann Wolf: Data shows that technology can support the following:
• Closing the achievement gap by providing access to software, online resources, and virtual learning aligned to academic standards for instruction and learning.
• Supporting the development of highly qualified teachers by providing online courses, communities of practice, and virtual communication that ensure flexibility and access.
• Enhancing data systems to ensure that educators can utilize real-time data to inform sound instructional decisions and ensure that schools meet adequate yearly progress (AYP). SETDA produces a national trends report each year that is available at www.setda.org and provides information on how all states are utilizing NCLB Title II, Part D funding (Enhancing Education through Technology) and how the use of educational technology supports NCLB goals.

What are three effective ways that technology and engineering can be incorporated into a program for middle school students?

Yvonne Spicer: I would ask why just middle school? I would certainly start at elementary school so you are building on an established foundation of understanding in technology and engineering. Planting the seed early. I would focus on the following:
1. A deep understanding of problem-solving skills and the engineering design process.
2. Collaborative teamwork in solving technological problems in the real world (e.g., renewable energy, transportation).
3. Focusing on the value of using math and science to solve technological and engineering problems.

Are there schools out there that are role models for integrating technology and engineering into STEM education?

Raymond V. Bartlett: I am not going to claim knowledge of the entire nation, so I will just cite one school that is an exemplar for doing just what you suggest, and that is the Chantilly Academy in Fairfax County, Va. I’m certain there are others. Chantilly has successfully integrated technology and engineering into the everyday curriculum, and brought a number of programs into the school.

How can we do a better job preparing preservice teachers to integrate technology into learning?

Wolf: This is a very, very important question. I think the simple answer is actually practicing what we ask teachers to do, which is to utilize the technology when learning pedagogy. Most of the students in undergraduate studies today are comfortable using technology—they use it in their everyday lives constantly, whether instant messaging, social networking, or other Web 2.0 applications. However, knowing how to use the technology does not translate into using technology effectively in instruction. We often say that those of us who work in ed tech don’t sit around talking about technology—we talk about teaching math or teaching science or using data to individualize instruction. Preservice and in-service professional development also must have a focus on instruction and learning—but it must be ongoing and sustainable.

What curriculum changes would enable students to grasp the necessity of all four STEM subjects?

Spicer: An integrated approach to STEM education. The K-12 content has traditionally been taught in silos, with the exception of elementary school. For example, high school is organized in specific content areas, with rare opportunities for collaboration between teachers in specific fields. I believe until our students are graduating with a deep understanding of content as well as how it is applied in the real world, we will continue to fall short in education.

Compiled by Kevin Bushweller

A version of this article appeared in the June 09, 2008 edition of Digital Directions as Where Are the ‘T’ and ‘E’ in STEM?

Events

Webinar Supporting Older Struggling Readers: Tips From Research and Practice
Reading problems are widespread among adolescent learners. Find out how to help students with gaps in foundational reading skills.
This content is provided by our sponsor. It is not written by and does not necessarily reflect the views of Education Week's editorial staff.
Sponsor
Reading & Literacy Webinar
Improve Reading Comprehension: Three Tools for Working Memory Challenges
Discover three working memory workarounds to help your students improve reading comprehension and empower them on their reading journey.
Content provided by Solution Tree
Recruitment & Retention Webinar EdRecruiter 2026 Survey Results: How School Districts are Finding and Keeping Talent
Discover the latest K-12 hiring trends from EdWeek’s nationwide survey of job seekers and district HR professionals.

EdWeek Top School Jobs

Teacher Jobs
Search over ten thousand teaching jobs nationwide — elementary, middle, high school and more.
View Jobs
Principal Jobs
Find hundreds of jobs for principals, assistant principals, and other school leadership roles.
View Jobs
Administrator Jobs
Over a thousand district-level jobs: superintendents, directors, more.
View Jobs
Support Staff Jobs
Search thousands of jobs, from paraprofessionals to counselors and more.
View Jobs

Read Next

Science Opinion Strategies to Help Students Embrace Science Instruction
Knowing how to redirect science denial in your classroom is a strong way to start.
9 min read
Conceptual illustration of classroom conversations and fragmented education elements coming together to form a cohesive picture of a book of classroom knowledge.
Sonia Pulido for Education Week
This content is provided by our sponsor. It is not written by and does not necessarily reflect the views of Education Week's editorial staff.
Sponsor
Science Quiz
Quiz Yourself: Evaluating Effective Science Instruction in Your District
Answer 7 questions about evaluating effective science instruction in your district.
Science Opinion Science Scores Are Down. But We Know What Would Improve Them
The when, where, and how of science instruction needs rethinking.
Emma Banay, Christine Cunningham & James Ryan
4 min read
Flat vibrant vector illustration depicting science education and learning concept. Illustration is showing different ways of learning: listening, watching, observing, exploring, experimenting, asking questions, talking and communicating, reading, drawing, and writing. The female teacher is placed on the right side and there are also two pupils each one representing different theme; one girl asking question and learning by listening  and a boy holding a hand up to answer a question.
DigitalVision Vectors/Getty
Science What's Behind the Drop in Students' Science Scores on NAEP?
Survey results from the National Assessment of Educational Progress show 8th graders do less scientific inquiry now than five years ago.
4 min read
Middle school students learn about the value and shape of matter while building containers to hold liquid during an 8th grade science class at Boys’ Latin School of Maryland on Oct. 24, 2024 in Baltimore, Md.
Eighth graders learn about the value and shape of matter while building containers to hold liquid during a science class at Boys’ Latin School of Maryland on Oct. 24, 2024, in Baltimore. Nationally, 8th graders lost ground in science, according to the 2024 National Assessment of Educational Progress.
Jaclyn Borowski/Education Week