Science

Elementary Science Materials Still Lag Standards. Could Free Resources Help?

By Sarah Schwartz — October 28, 2022 7 min read
Third-graders Fermando Lira, left, and Kale Regier work on an experiment with magnets during a class lesson on magnetism and force Friday, Dec. 3, 2021, at Sioux City's Perry Creek Elementary School. The lesson was part of an International Baccalaureate learning inquiry. Perry Creek Elementary is one of three schools in the district pursuing designation as an International Baccalaureate World School.
  • Save to favorites
  • Print

Teaching elementary school science can be a struggle.

Math and English dominate the schedule in the early grades, often leaving scant time for science. And most elementary teachers don’t have a science background, meaning that there can be a steep learning curve for educators who want to dive deep into science topics.

Another hurdle: finding materials that account for these challenges—all while aligning to state standards.

“A lot of teachers here in our public schools feel like they have to create everything from scratch,” said Jennifer Williams, the department chair for lower school science at the Isidore Newman School, a private, independent school in New Orleans.

An upcoming curriculum project is aiming to fill that gap.

OpenSciEd, an initiative to provide free, open-source instructional materials aligned to the Next Generation Science Standards, is starting to develop elementary units to complement its growing stable of middle school lessons. The group plans to begin releasing the units over the next few years.

Developed by a collaborative of states and science education organizations, the Next Generation Science Standards, or NGSS, were released in 2014. Since then, 20 states and the District of Columbia have adopted them, and 24 states have developed their own standards based on this framework.

But elementary materials are still “catching up” to these new standards, according to a recent report on the state of the field from the National Academies of Sciences, Engineering, and Medicine. Organizations that review curricula for alignment and ease of use have given strong ratings to just a handful of products.

In part, this lag between the standards and materials development has to do with how different the NGSS are from the way science was taught in the past, said Vanessa Wolbrink, the associate project director for NextGenScience, a team at the research and consulting organization WestEd that supports implementation of the standards in districts.

“You might think you have to remodel your house. But you have to knock down that house and rebuild it,” she said.

Amid big instructional shifts like this, free curricula can play a big role.

For example: When the Common Core State Standards first came out in the early 2010s, New York State developed EngageNY, a resource library of aligned materials that teachers could download. Within its first few years, the content had been downloaded more than 20 million times by educators in other states around the country.

How NGSS are different than previous ways of teaching science

The Next Generation Science Standards aim to turn science into something that children do, rather than a class where they only learn about what others have done, said Brian Reiser, a professor of learning sciences in the School of Education and Social Policy at Northwestern University. The goal is to make science feel connected to students’ lives, he said.

Reiser, whose team at Northwestern is leading a group of developers creating the OpenSciEd elementary units, also helped develop the science framework that guides the NGSS.

A hallmark of the new standards is student inquiry. Lessons and units are designed around phenomena—observable events like hurricanes or climate change—that students then work to explain through science principles. At the same time, they’re learning how to employ the practices that scientists and engineers use in their work.

“With the new way that we are teaching science under NGSS and with sense-making, we have to release control,” said Williams, the science department chair in New Orleans. “That is a total mindshift for our more veteran teachers.”

This challenge of pedagogy exists at all grade levels, but there are also unique barriers elementary teachers face in aligning their instruction to the new standards.

As Education Week has reported, elementary school teachers often don’t have extensive science backgrounds. Most preparation programs for those teachers don’t require coursework in biology, chemistry, or physics.

Elementary students are also at a different place in their cognitive development than older kids. A 5th grader might be able to evaluate their understanding of a “phenomenon,” and then think about what they still need to know. But that process might need to be simplified for a 1st grader, said James Ryan, the executive director of OpenSciEd.

“Some of the routines that we have built into the middle and high school materials will have to be adjusted,” he said.

Finally, there’s the obstacle of time: Science often gets short shrift in elementary school classrooms, edged out by math and reading—subjects that are the focus of mandatory testing. Only once a school has high test scores in math and English/language arts, it “feels comfortable in making time for science,” Ryan said.

“If a school struggles and doesn’t test well, they double down and put more time in those subjects—and they do so by abandoning science instruction,” he continued. “And what that looks like is a very inequitable system.”

Developing ‘creative’ ways to fit science into the school day

The OpenSciEd developer team is trying to address these roadblocks. For one thing, the units will be designed to help schools get “creative” about fitting science into the schedule, said Amelia Gotwals, an associate professor of science education at Michigan State University, and a member of the developer team.

“We’ve thought about lessons as being in components, or in sections, that you can split up to be in different times during the school day,” she said. Some elementary schools have a science block every other day; others alternate weeks of science and social studies time. “We’re trying to create the curriculum to be usable for all of those different models,” shes said.

The materials will also integrate numeracy and literacy skills, so that they touch on math and ELA standards, as well as science ones. “We’ve found it really helpful for administrators that we can point [that] out,” Gotwals said. For example, a text set that helps students make sense of a scientific phenomenon could be used as part of a read-aloud block.

Incorporating more science and social studies into reading periods is an idea that’s gained traction in the ELA community, too, among advocates of “knowledge-building curricula.” Studies have shown that building students’ background knowledge, including key science content like biology and earth science, can help their reading comprehension when they encounter those topics in other texts.

Including science read-alouds is one way to build more science time into the day. But Gotwals and Reiser both emphasized that it shouldn’t be the only time students get with the subject.

Instead, text should serve as a way that students can seek the answers to questions they come up with, Reiser said.

How might an elementary lesson be structured?

Take a 4th grade lesson about how water waves work. The teacher wouldn’t start by describing a model. Instead, Reiser said, a teacher might open the lesson like this: “We’re going to start that unit with an interesting story, about people who found thousands of Dorito chip bags washing up on the beach.”

Why—and how—did that happen?

“That conversation surfaces lots and lots of questions,” Reiser said. To answer some of those questions, students might read a passage about how storms affect wave patterns. The reading serves a specific purpose.

“We’re not doing it because it’s reading time; we’re not doing it because it’s [about] waves. We’re doing it because we have all of these questions,” Reiser said.

How students record their findings and keep track of evidence will look different for the youngest learners, too, said Gotwals. “With our older students, we often can use print words to help them in their thinking about their thinking,” she said.

Kids might keep track of their wonderings on a board of ongoing questions throughout a unit, she said. For students who can’t yet read fluently, the team is coming up with other ways to serve that same purpose.

The development of the OpenSciEd units is on a multi-year timeline: The project won’t be completed in full until 2026. Teachers will need to modify existing resources to align them more closely to standards.

And Williams, the New Orleans science teacher, said she and her colleagues have embedded place-based phenomena—like hurricanes, restoration projects, or local invasive species—within the lessons that they teach. “It shows the children the real-life connections,” she said.

Events

This content is provided by our sponsor. It is not written by and does not necessarily reflect the views of Education Week's editorial staff.
Sponsor
Reading & Literacy Webinar
(Re)Focus on Dyslexia: Moving Beyond Diagnosis & Toward Transformation
Move beyond dyslexia diagnoses & focus on effective literacy instruction for ALL students. Join us to learn research-based strategies that benefit learners in PreK-8.
Content provided by EPS Learning
Classroom Technology Live Online Discussion A Seat at the Table: Is AI Out to Take Your Job or Help You Do It Better?
With all of the uncertainty K-12 educators have around what AI means might mean for the future, how can the field best prepare young people for an AI-powered future?
Special Education K-12 Essentials Forum Understanding Learning Differences
Join this free virtual event for insights that will help educators better understand and support students with learning differences.

EdWeek Top School Jobs

Teacher Jobs
Search over ten thousand teaching jobs nationwide — elementary, middle, high school and more.
View Jobs
Principal Jobs
Find hundreds of jobs for principals, assistant principals, and other school leadership roles.
View Jobs
Administrator Jobs
Over a thousand district-level jobs: superintendents, directors, more.
View Jobs
Support Staff Jobs
Search thousands of jobs, from paraprofessionals to counselors and more.
View Jobs

Read Next

Science The Biggest Barriers to STEM Education, According to Educators
Educators share the challenges schools face in teaching STEM.
1 min read
Photograph of a diverse group of elementary school kids, with a white male teacher, working on a robot design in the classroom
E+
Science The Grades Where Science Scores Have Taken the Biggest Hit
One of the first studies to examine science performance finds that elementary students' scores have rebounded. Not so in middle school.
4 min read
An illustration of a non person of color climbing a large pencil with a safety harness and rope tied around the tip of the pencil while a person of color is in the distance without a safety harness or rope attempting to climb a very large science beaker.
Collage by Gina Tomko/Education Week + Canva
Science Spotlight Spotlight on STEM in Education
This Spotlight will help you learn how to bolster the STEM teacher pipeline, discover how hands-on learning increases engagement, and more.
Science From Our Research Center Educators: Start Early to Keep Students Engaged in STEM
The EdWeek Research Center asked teachers, principals, and district leaders how to motivate kids to pursue STEM learning.
2 min read
Photo illustration of chemistry teacher working with young student.
F. Sheehan for Education Week + E+ / Getty