Opinion
Science Commentary

Unlikely Pioneers

By Jeffrey Weld — March 29, 2000 5 min read
My high school physics teacher used to tell us that if ignorance is bliss, we must be the happiest people on the planet.

My high school physics teacher used to tell us that if ignorance is bliss, we must be the happiest people on the planet. He was out to enlighten us on the mysteries of momentum, refraction, and the quantum, but his dry and windy lectures chased the bliss right out of us, if not the ignorance.

Twenty years later, I am in the privileged position of preparing science teachers. When I meet them as college juniors and seniors, or as postbaccalaureates enrolled in their first science-methods course, many are blissfully ignorant of the wide chasm that exists between effective teaching practices and the teaching they are all too familiar with as clients of K-12 and collegiate science. Most of them would surely teach as they were taught, if not for coursework on learning theory, exceptional children, developmental psychology, and active inquiry.

They would memorize the textbook chapter on thermodynamics the day before presenting a lecture on that topic. End-of-chapter questions in their teacher’s manual would be assigned to measure students’ note-taking skills. On Thursday, they might have a lab section where students use a prescribed recipe to complete a data table, then, after some number-crunching arrive at a figure that, with any luck, matches the one in the teacher’s manual. On Friday, a quiz; on Monday, Chapter 9.

Many are blissfully ignorant of the wide chasm that exists between effective teaching practices and the teaching they are all too familiar with.

Sometimes I feel like an Alcoholics Anonymous facilitator—providing my clients with evidence that there is, in fact, a problem; that most of what they’ve believed to be effective science teaching is not. Over a period of time ranging from a month to a year (dependent, it seems to me, on a sort of mental maturity that allows for seeing the world from another’s point of view), these future science teachers progress from denial to shock to dismay to resolve. Their research, class discussions, and field experiences all point them to a vision of science teaching quite different from what many had known. Then, of course, comes student-teaching.

A fortunate handful will test their wings under the guidance of research-reflective practitioners who augment and reinforce the tenuous hold my student-teachers have on equitable, inquiry-based practices and philosophy. For many, though, student-teaching is something to “survive” until they get their own labs and can “do it their way.” These candidates become “bi-pedagogical"—dutifully executing their hosts’ notes, quizzes, seating charts, and trying out open investigations and class debates toward semester’s end, or when their cooperating teacher is absent.

Upon graduation, my students fall into two groups: Those who are well on their way to refining the art and craft of student-centered science teaching and look forward to getting paid for it; and those who have suppressed their reformed vision until getting a class of their own. They interview well, regaling principals with goals like science for all, critical thinking, cooperative problem-solving, real-world relevance.

Then I start to get e-mails from these former students. They say they weren’t prepared for colleagues who warn them against amusement-park physics or farm-erosion studies that take them out of school at the expense of other classes. They’re told their classrooms are too loud and their tests don’t look much like tests. Their students aren’t allowed to do group work in study hall. My graduates say they are pressured by administrators to keep budget requests at the level of their more traditional predecessors, and to give each student a grade every day, a test every week. Parents ask my former students why there’s no textbook coming home at night, why their child has to work in groups, and “how come the kids aren’t memorizing binomial nomenclature like we had to.” Their students complain about so many questions with so few answers.

As a teacher of future science teachers, guilt has been my impetus for squeezing the amount of time we devote to Inclusionary Practices, Questioning Skills, Appropriate Technology Integration, Authentic Assessment, and so on, to make more room for exploring Institutional Constraints to Excellence.

The latter is a topic I hope to dismantle eventually. But despite a 40-year movement toward reform in science education—toward an emphasis on inquiry, constructivism, and process skills—tradition, in the form of content lectures and multiple-choice exams, continues to reign supreme in the schools. New teachers, the most unlikely pioneers, often face hardships that inhibit their abilities to teach science in a fashion that reflects research.

We decide that students need to know our personal goals and our goals for them up front, as a justification for our methods.

So we teacher-educators and student-teachers brainstorm tactics of survival—ways of winning over students and their parents, teacher colleagues, and school administrators. We decide that students need to know our personal goals and our goals for them up front, as a justification for our methods. We concur that parents need to be sold on our philosophy, through active promotion of its research basis, at open houses and during parent-teacher conferences. We agree that colleagues deserve to be listened to, and told little, leaving our door open for when they get curious. Our administrators, the consensus goes, will fall in line behind students, parents, and teaching peers.

We study cases of teachers who have braved the trail before us—obstacles encountered, remedies found. We host revolutionaries from the local schools who practice standards-based instruction in science despite a system that favors tradition. We develop the profile of the successful new teacher—stealth, aplomb.

As for myself, I arrange to meet teachers of reputation at local and state conferences. And I do lots of asking around—I ask about the teachers others might consider “odd.” I place student-teachers with them. I keep good records and scrutinize cooperating teachers’ evaluations for words like “flexible,” “independent,” “caring.” I host seminars for these cooperating teachers at which I pitch our goals and the vital role they play in achieving them.

Someday, my students will be ignorant of there ever having been an archaic method for ineffectively teaching science.

Eventually, as I say, my course will be pared considerably. I remain most needed as long as the prevailing teaching style defies research on learning science. Ultimately, I will inherit students who have only known science as inquiry, and all I will need to do with them is help them develop an encompassing rationale and philosophy for what they already have experienced. Someday, my students will be ignorant of there ever having been an archaic method for ineffectively teaching science. And that will be true bliss.

Related Tags:

A version of this article appeared in the March 29, 2000 edition of Education Week as Unlikely Pioneers

Events

This content is provided by our sponsor. It is not written by and does not necessarily reflect the views of Education Week's editorial staff.
Sponsor
Student Well-Being Webinar
Measuring & Supporting Student Well-Being: A Researcher and District Leader Roundtable
Students’ social-emotional well-being matters. The positive and negative emotions students feel are essential characteristics of their psychology, indicators of their well-being, and mediators of their success in school and life. Supportive relationships with peers, school
Content provided by Panorama Education
This content is provided by our sponsor. It is not written by and does not necessarily reflect the views of Education Week's editorial staff.
Sponsor
School & District Management Webinar
Making Digital Literacy a Priority: An Administrator’s Perspective
Join us as we delve into the efforts of our panelists and their initiatives to make digital skills a “must have” for their district. We’ll discuss with district leadership how they have kept digital literacy
Content provided by Learning.com
This content is provided by our sponsor. It is not written by and does not necessarily reflect the views of Education Week's editorial staff.
Sponsor
School & District Management Webinar
How Schools Can Implement Safe In-Person Learning
In order for in-person schooling to resume, it will be necessary to instill a sense of confidence that it is safe to return. BD is hosting a virtual panel discussing the benefits of asymptomatic screening
Content provided by BD

EdWeek Top School Jobs

Teacher Jobs
Search over ten thousand teaching jobs nationwide — elementary, middle, high school and more.
View Jobs
Principal Jobs
Find hundreds of jobs for principals, assistant principals, and other school leadership roles.
View Jobs
Administrator Jobs
Over a thousand district-level jobs: superintendents, directors, more.
View Jobs
Support Staff Jobs
Search thousands of jobs, from paraprofessionals to counselors and more.
View Jobs

Read Next

Science Opinion Working With the Likes of Lego, Disney, and Lucasfilm to Engage Students in STEM
Rick Hess speaks with FIRST's Erica Newton Fessia about inspiring young people's interest in STEM using team-based robotics programs.
6 min read
Image shows a multi-tailed arrow hitting the bullseye of a target.
DigitalVision Vectors/Getty
This content is provided by our sponsor. It is not written by and does not necessarily reflect the views of Education Week's editorial staff.
Sponsor
Science Whitepaper
Improve language arts skills through science
In this white paper, learn how science can be an important part of the day by using a curriculum that includes communication, collaborati...
Content provided by Carolina Biological
Science Leader To Learn From A Place Where Teachers Take the Lead on Science Curriculum
Anna Heyer has empowered teachers to shape the science curriculum in an Arizona district, and has expanded time spent on science.
7 min read
Anna Heyer, District Science Specialist for the Flowing Wells Unified School District in Tucson, Ariz.
Anna Heyer, science specialist for the Flowing Wells Unified School District in Tucson, Ariz.
Caitlin O'Hara for Education Week
Science Opinion Ten Culturally Responsive Teaching Strategies for the Science Classroom
Four teachers share how they implement culturally responsive instruction in their science classrooms.
13 min read
Images shows colorful speech bubbles that say "Q," "&," and "A."
iStock/Getty