Opinion
Science Opinion

Unlikely Pioneers

By Jeffrey Weld — March 29, 2000 5 min read
  • Save to favorites
  • Print
My high school physics teacher used to tell us that if ignorance is bliss, we must be the happiest people on the planet.

My high school physics teacher used to tell us that if ignorance is bliss, we must be the happiest people on the planet. He was out to enlighten us on the mysteries of momentum, refraction, and the quantum, but his dry and windy lectures chased the bliss right out of us, if not the ignorance.

Twenty years later, I am in the privileged position of preparing science teachers. When I meet them as college juniors and seniors, or as postbaccalaureates enrolled in their first science-methods course, many are blissfully ignorant of the wide chasm that exists between effective teaching practices and the teaching they are all too familiar with as clients of K-12 and collegiate science. Most of them would surely teach as they were taught, if not for coursework on learning theory, exceptional children, developmental psychology, and active inquiry.

They would memorize the textbook chapter on thermodynamics the day before presenting a lecture on that topic. End-of-chapter questions in their teacher’s manual would be assigned to measure students’ note-taking skills. On Thursday, they might have a lab section where students use a prescribed recipe to complete a data table, then, after some number-crunching arrive at a figure that, with any luck, matches the one in the teacher’s manual. On Friday, a quiz; on Monday, Chapter 9.

Many are blissfully ignorant of the wide chasm that exists between effective teaching practices and the teaching they are all too familiar with.

Sometimes I feel like an Alcoholics Anonymous facilitator—providing my clients with evidence that there is, in fact, a problem; that most of what they’ve believed to be effective science teaching is not. Over a period of time ranging from a month to a year (dependent, it seems to me, on a sort of mental maturity that allows for seeing the world from another’s point of view), these future science teachers progress from denial to shock to dismay to resolve. Their research, class discussions, and field experiences all point them to a vision of science teaching quite different from what many had known. Then, of course, comes student-teaching.

A fortunate handful will test their wings under the guidance of research-reflective practitioners who augment and reinforce the tenuous hold my student-teachers have on equitable, inquiry-based practices and philosophy. For many, though, student-teaching is something to “survive” until they get their own labs and can “do it their way.” These candidates become “bi-pedagogical"—dutifully executing their hosts’ notes, quizzes, seating charts, and trying out open investigations and class debates toward semester’s end, or when their cooperating teacher is absent.

Upon graduation, my students fall into two groups: Those who are well on their way to refining the art and craft of student-centered science teaching and look forward to getting paid for it; and those who have suppressed their reformed vision until getting a class of their own. They interview well, regaling principals with goals like science for all, critical thinking, cooperative problem-solving, real-world relevance.

Then I start to get e-mails from these former students. They say they weren’t prepared for colleagues who warn them against amusement-park physics or farm-erosion studies that take them out of school at the expense of other classes. They’re told their classrooms are too loud and their tests don’t look much like tests. Their students aren’t allowed to do group work in study hall. My graduates say they are pressured by administrators to keep budget requests at the level of their more traditional predecessors, and to give each student a grade every day, a test every week. Parents ask my former students why there’s no textbook coming home at night, why their child has to work in groups, and “how come the kids aren’t memorizing binomial nomenclature like we had to.” Their students complain about so many questions with so few answers.

As a teacher of future science teachers, guilt has been my impetus for squeezing the amount of time we devote to Inclusionary Practices, Questioning Skills, Appropriate Technology Integration, Authentic Assessment, and so on, to make more room for exploring Institutional Constraints to Excellence.

The latter is a topic I hope to dismantle eventually. But despite a 40-year movement toward reform in science education—toward an emphasis on inquiry, constructivism, and process skills—tradition, in the form of content lectures and multiple-choice exams, continues to reign supreme in the schools. New teachers, the most unlikely pioneers, often face hardships that inhibit their abilities to teach science in a fashion that reflects research.

We decide that students need to know our personal goals and our goals for them up front, as a justification for our methods.

So we teacher-educators and student-teachers brainstorm tactics of survival—ways of winning over students and their parents, teacher colleagues, and school administrators. We decide that students need to know our personal goals and our goals for them up front, as a justification for our methods. We concur that parents need to be sold on our philosophy, through active promotion of its research basis, at open houses and during parent-teacher conferences. We agree that colleagues deserve to be listened to, and told little, leaving our door open for when they get curious. Our administrators, the consensus goes, will fall in line behind students, parents, and teaching peers.

We study cases of teachers who have braved the trail before us—obstacles encountered, remedies found. We host revolutionaries from the local schools who practice standards-based instruction in science despite a system that favors tradition. We develop the profile of the successful new teacher—stealth, aplomb.

As for myself, I arrange to meet teachers of reputation at local and state conferences. And I do lots of asking around—I ask about the teachers others might consider “odd.” I place student-teachers with them. I keep good records and scrutinize cooperating teachers’ evaluations for words like “flexible,” “independent,” “caring.” I host seminars for these cooperating teachers at which I pitch our goals and the vital role they play in achieving them.

Someday, my students will be ignorant of there ever having been an archaic method for ineffectively teaching science.

Eventually, as I say, my course will be pared considerably. I remain most needed as long as the prevailing teaching style defies research on learning science. Ultimately, I will inherit students who have only known science as inquiry, and all I will need to do with them is help them develop an encompassing rationale and philosophy for what they already have experienced. Someday, my students will be ignorant of there ever having been an archaic method for ineffectively teaching science. And that will be true bliss.

Related Tags:

A version of this article appeared in the March 29, 2000 edition of Education Week as Unlikely Pioneers

Events

This content is provided by our sponsor. It is not written by and does not necessarily reflect the views of Education Week's editorial staff.
Sponsor
Special Education Webinar
Bridging the Math Gap: What’s New in Dyscalculia Identification, Instruction & State Action
Discover the latest dyscalculia research insights, state-level policy trends, and classroom strategies to make math more accessible for all.
Content provided by TouchMath
This content is provided by our sponsor. It is not written by and does not necessarily reflect the views of Education Week's editorial staff.
Sponsor
School Climate & Safety Webinar
Belonging as a Leadership Strategy for Today’s Schools
Belonging isn’t a slogan—it’s a leadership strategy. Learn what research shows actually works to improve attendance, culture, and learning.
Content provided by Harmony Academy
This content is provided by our sponsor. It is not written by and does not necessarily reflect the views of Education Week's editorial staff.
Sponsor
School & District Management Webinar
Too Many Initiatives, Not Enough Alignment: A Change Management Playbook for Leaders
Learn how leadership teams can increase alignment and evaluate every program, practice, and purchase against a clear strategic plan.
Content provided by Otus

EdWeek Top School Jobs

Teacher Jobs
Search over ten thousand teaching jobs nationwide — elementary, middle, high school and more.
View Jobs
Principal Jobs
Find hundreds of jobs for principals, assistant principals, and other school leadership roles.
View Jobs
Administrator Jobs
Over a thousand district-level jobs: superintendents, directors, more.
View Jobs
Support Staff Jobs
Search thousands of jobs, from paraprofessionals to counselors and more.
View Jobs

Read Next

Science Opinion Science Scores Are Down. But We Know What Would Improve Them
The when, where, and how of science instruction needs rethinking.
Emma Banay, Christine Cunningham & James Ryan
4 min read
Flat vibrant vector illustration depicting science education and learning concept. Illustration is showing different ways of learning: listening, watching, observing, exploring, experimenting, asking questions, talking and communicating, reading, drawing, and writing. The female teacher is placed on the right side and there are also two pupils each one representing different theme; one girl asking question and learning by listening  and a boy holding a hand up to answer a question.
DigitalVision Vectors/Getty
Science What's Behind the Drop in Students' Science Scores on NAEP?
Survey results from the National Assessment of Educational Progress show 8th graders do less scientific inquiry now than five years ago.
4 min read
Middle school students learn about the value and shape of matter while building containers to hold liquid during an 8th grade science class at Boys’ Latin School of Maryland on Oct. 24, 2024 in Baltimore, Md.
Eighth graders learn about the value and shape of matter while building containers to hold liquid during a science class at Boys’ Latin School of Maryland on Oct. 24, 2024, in Baltimore. Nationally, 8th graders lost ground in science, according to the 2024 National Assessment of Educational Progress.
Jaclyn Borowski/Education Week
Science Opinion Science Is Losing the Battle for America’s Trust. How Schools Can Help
I grew up a creationist and became a science educator. Here’s what I know about building trust in science.
Amanda L. Townley
8 min read
A diverse group of people building a hall of science using scientific tools, blocks, and symbols.
Islenia Mil for Education Week
Science Want Students to Be Better in Science? Bolster Their Math Skills
Teachers share how they model problem-solving, build conceptual understanding of equations, and collaborate with math educators.
5 min read
Seniors at Thurgood Marshall Academic High School in San Francisco practice the use of a pipette as part of a STEM initiative on April 29, 2024.
Seniors at Thurgood Marshall Academic High School in San Francisco practice the use of a pipette as part of a STEM initiative on April 29, 2024. Science teachers say they often have to shore up students' math skills in their lessons.
Peter Prato for Education Week