Opinion
Science Opinion

The Search for Real-World STEM Problems

By Anne Jolly — July 19, 2017 5 min read
BRIC ARCHIVE
  • Save to favorites
  • Print

If you want to engage students and get them excited about what they are learning in science, technology, engineering, and mathematics classes, ask them to tackle a real-world problem. Then watch their amazement as they realize what they are learning in class actually has real-world applications.

Working on solutions to real-world problems is the heart of any STEM investigation. These solutions may include devices and designs that improve our lives, fulfill our needs or wants, and make our world better. From designing a better pen to figuring out how to assist areas lacking access to clean drinking water, the opportunity to search for solutions to real-world problems fuels students’ curiosity and sparks their investigative interests.

Perhaps the most important consequence of students working on real problems is that they begin to develop empathy—a sense that there is something worth dedicating their efforts to outside of themselves. We need to grow a savvy, ethical workforce to solve looming issues such as air pollution, fresh-water shortages, and crumbling infrastructure.

Criteria for Selecting Real-World Problems

Designing real-world engineering challenges for K-12 students can be tough. In my experience as a STEM teacher, identifying authentic problems that students can work on is one of the most challenging parts of lesson planning.

Here are some of the criteria I consider when selecting real-world problems:

  • The problem must be real. It must involve an authentic engineering challenge grounded in compelling societal, economic, and environmental issues that affect people’s lives and communities. Mythical insects, space aliens, and theoretical life forms are not real-world problems—at least not yet.
  • Students must be able to relate to the problem. If students don’t care about the problem, their buy-in will be limited. This needs to be a significant challenge students care about. It might be a problem in their own life or community. Alternatively, you might build a context to help them connect with an unfamiliar problem by using videos, speakers, or field trips.
  • The problem should be “doable.” For a STEM project to be successful, students should have access to the resources, knowledge, and skills they need to solve the problem—and the scope of the problem should be manageable. Engineering solutions for a problem involving clean energy, such as wind turbines or solar cells, might be realistic. However, tackling a problem involving interplanetary space travel—not so much.
  • The problem must allow for multiple acceptable approaches and solutions. Don’t even consider a problem with a single, predetermined approach and “right” or “wrong” answer. In your STEM class, each team of students might choose a different approach for solving the problem, and several different solutions may work.
BRIC ARCHIVE

  • Students should use an engineering design process—drawing on science, mathematics, and technology skills and concepts—to solve the problem. However, each subject doesn’t need to be used to the same extent. Some solutions may rely more heavily on science and others on mathematics, but all must require students to use an engineering design process.
  • The problem should align with grade-level standards for science and mathematics. In a packed school day, neither teachers nor students have time for much “extra” curriculum content. Teachers can more readily buy into teaching STEM if students are able to use skills they are learning anyway to address the selected problem.

Problem Possibilities

Now for the most challenging part: selecting a real-world problem that meets the above criteria. When my students and I draw a blank, these are some of the tactics I use:

  • Encourage students to come up with the problem. This approach typically generates the most enthusiasm and buy-in from students. Give them as much autonomy as possible to identify problems they want to solve, within the constraints dictated by the curriculum. You might start by asking students to be on the alert for problems in their home, school, or community. For example, students might notice erosion in the schoolyard, or determine that kids need a digital tool to manage their homework assignments. If students get stuck, ask them what needs to happen to make life better for the citizens in their area. Are some people in their community hungry? Is pollution a problem? Just remember to direct students toward problems that are appropriate for their grade level and content knowledge.
  • Do an online search. Simply typing “real-world problems” in a search engine brings up a host of possible sites that you can sift through for ideas. But be forewarned: Everything labeled “real-world problem” is not necessarily a STEM real-world problem with an engineering approach.

Online Resources

So how do you focus your online research to target problems that students can approach with a STEM lens? Some of my go-to search options include:

  • If you need a jumping-off point, take a look at the National Academy of Engineering Grand Challenges. These challenges are divided into four major themes: sustainability, health, security, and joy of living. Some of the challenges that might inspire middle-school students revolve around solar energy, clean water, health care (including food shortage, disease, and accessibility), and urban infrastructure (including transportation systems and municipal structures).
  • Another one of my favorite sites is PBS’s Design Squad. You can find intriguing problem-solving ideas in the activities and lesson plans sections.
  • For high-school teachers, an excellent resource is Rutgers Today, which describes more advanced real-world problems. High school students in upper-level math or science courses might be able to design and implement solutions for these types of problems.

These are just a few of many resources that can help identify real-world problems with STEM solutions. In the comments section, share your own go-to websites or other resources for STEM instruction. By sharing your insights and experiences, you can help all STEM teachers—and students—learn.

Image provided by the author.

Related Tags:

Events

This content is provided by our sponsor. It is not written by and does not necessarily reflect the views of Education Week's editorial staff.
Sponsor
Mathematics Webinar
Pave the Path to Excellence in Math
Empower your students' math journey with Sue O'Connell, author of “Math in Practice” and “Navigating Numeracy.”
Content provided by hand2mind
This content is provided by our sponsor. It is not written by and does not necessarily reflect the views of Education Week's editorial staff.
Sponsor
Recruitment & Retention Webinar
Combatting Teacher Shortages: Strategies for Classroom Balance and Learning Success
Learn from leaders in education as they share insights and strategies to support teachers and students.
Content provided by DreamBox Learning
Classroom Technology K-12 Essentials Forum Reading Instruction and AI: New Strategies for the Big Education Challenges of Our Time
Join the conversation as experts in the field explore these instructional pain points and offer game-changing guidance for K-12 leaders and educators.

EdWeek Top School Jobs

Teacher Jobs
Search over ten thousand teaching jobs nationwide — elementary, middle, high school and more.
View Jobs
Principal Jobs
Find hundreds of jobs for principals, assistant principals, and other school leadership roles.
View Jobs
Administrator Jobs
Over a thousand district-level jobs: superintendents, directors, more.
View Jobs
Support Staff Jobs
Search thousands of jobs, from paraprofessionals to counselors and more.
View Jobs

Read Next

Science Q&A How High School Students Are Making STEM Education Accessible for Younger Kids
Team STEAM is a program where high school students help elementary students develop STEM skills.
3 min read
Students from MC2 STEM High School in Cleveland critique their classmates’ projects for an event that blends STEM and art on March 16, 2017.
Students critique their classmates’ projects for an event that blends STEM and art in Cleveland on March 16, 2017.
Allison Shelley for All4Ed
Science Opinion How to Teach Students About Climate Change—Without Giving Them Eco-Anxiety
Climate science education is essential, but the wrong approach can damage young people’s mental health, warn two students. Here are 4 tips.
Willa Grifka & Luke Williams
4 min read
Photo illustration of a green nature filled silhouette of a person standing in contemplation looking at smoggy urban cityscape.
FangXiaNuo/iStock/Getty
Science White Students Are Less Concerned About Climate Change Than Students of Color. Here's Why
Nearly half of white teenagers said the threat of climate change hasn't affected their plans for the future.
4 min read
A person is faced with a decision between an open doorway placed on a dry, dark, cracked ground with dark skies or an open doorway placed on bright green grass with blue skies.
iStock/Getty
Science Rural Students Are More Skeptical of Climate Change. What Should Teachers Do?
Nearly 8 in 10 U.S. teenagers agree with the scientific consensus that climate change is real and mainly caused by human activity.
2 min read
Digitally generated image of a forked road. It leads in two directions. One towards a bleak future where climate change has destroyed the enviroment. The other way shows a way towards prosperity with renewable energy and a sustainable climate. In the middle of the road stands a 3D-model person.
iStock/Getty