Science Opinion

Effective Science Learning Means Observing and Explaining. There’s a Curriculum for That

Researchers say grappling with problems beats out traditional approaches
By William R. Penuel — May 17, 2021 5 min read
A group of student scientists monitor a volcanic eruption
  • Save to favorites
  • Print

Editor’s Note: This is part of a continuing series on the practical takeaways from research.

Over the past year, students have had to learn a lot about a phenomenon that has dominated their lives: the COVID-19 pandemic. Making sense of it has required families to learn together about the science of the virus and figure out how to protect their health in the face of great uncertainty and social inequality.

As education seeks to rebuild coming out of the COVID-19 era, teaching science through the lens of phenomena presents an opportunity to make the subject more meaningful to students. The recently enacted American Rescue Plan provides funding for states, districts, and schools to address disruptions in student learning caused by the pandemic. Some of that money could go to getting teachers the experiences and students the materials that make quality phenomenon-based science education possible.

“Phenomena” refer to observable events in the world that require science knowledge and practices to explain, such as the causes and course of the COVID-19 pandemic. Organizing instruction around phenomena is a key feature of many reforms aimed at meeting the Next Generation Science Standards, an ambitious set of standards adopted or adapted by 44 states in 2013. Phenomena are also an organizing feature of instructional reforms in countries outside the United States, like high-performing Finland. But what is phenomenon-based learning, and what evidence is there that it works?

In the past, science teaching often introduced students to new topics using a demonstration or by presenting a surprising finding or event. In phenomenon-based learning, units of instruction are organized around the task of explaining a complex phenomenon or meeting a design challenge. That is, phenomena and problems provide the primary context for students to ask questions, conduct investigations, build models, argue from evidence, and communicate findings. Phenomena are more than just the initial “hooks” that are intended to capture interest. They are what motivates students to develop their understanding of science ideas and what connects lessons together in a way that is meaningful.

I was a co-author of a study that compared the impact of a widely available phenomenon-based curriculum with that of a more traditional approach. We randomly assigned schools to either the “treatment,” where teachers implemented the phenomenon-based curriculum, or the comparison condition, where teachers followed the district-adopted textbook.

In phenomenon-based learning, units of instruction are organized around the task of explaining a complex phenomenon or meeting a design challenge.

The textbook presented science much as many do, primarily as a body of facts and vocabulary to be learned with few opportunities to engage with phenomena. By contrast, the phenomenon-based curriculum organized units around explaining such occurrences as the “Ring of Fire” across the Pacific Ocean, where active volcanoes and earthquakes are much more common than elsewhere.

Our study found that students exposed to the phenomenon-based curriculum learned more based on a test aligned with the Next Generation standards than did students using the textbook. Importantly, the results were similar across students of different racial and ethnic backgrounds.

Just this spring, results from two additional random-assignment studies—considered the gold standard for evaluation—found that students learned more in phenomenon-based courses than in courses organized more traditionally. In one study of a revised Advanced Placement environmental-science curriculum, students exposed to the curriculum organized around meaningful projects where they have to explain phenomena outperformed students exposed to a traditional AP course organized around topics on the AP test. A second study examined the impact of a project-based science curriculum for elementary-aged students that also integrated supports for social and emotional learning. That study found students following the project-based curriculum outperformed those in the control group on a test designed by the Michigan education department aligned to the Next Generation standards.

While studies of materials for phenomenon-based learning are still few in number, a rich literature on problem-based science learning suggests how students and schools are likely to fare with a phenomenon-based approach. Phenomenon-based learning is in fact just a particular kind of problem-based learning, that is, learning where the development of science understanding is motivated by an attempt to solve real-world problems. A meta-analysis of 82 high-quality studies documented positive impacts of problem-based learning on student outcomes, such as conceptual knowledge, problem-solving skills, and self-regulation skills.

Phenomenon-based or problem-based learning is not without its challenges. One is helping students make generalizations from specific cases. When learning is organized around explaining specific cases or problems, students may not develop knowledge of the general principles or big science ideas that they could apply to other situations. A successful strategy can be to structure opportunities for students to encounter and make sense of contrasting cases or of phenomena related to similar science ideas.

In addition, to be successful, phenomena must be compelling enough to sustain students’ attention through the course of a unit. Teachers play a significant role in that by helping students make connections between phenomena presented in curricula and students’ interests, identities, and lived experiences. The research-practice partnership I’m a part of, inquiryHub, has found a link, too, between students’ engagement and their understanding of how a particular lesson fits into a broader sequence of lessons.

The past year has proved the critical role science education plays in our society. Phenomenon-based teaching has the potential to promote deep and meaningful science learning in our schools. As states and districts consider priorities for educational recovery and renewal, for my money there’s no better use of money in science education than moving to approaches that are phenomenon-based.


This content is provided by our sponsor. It is not written by and does not necessarily reflect the views of Education Week's editorial staff.
Teaching Profession Webinar
Professional Wellness Strategies to Enhance Student Learning and Live Your Best Life
Reduce educator burnout with research-affirmed daily routines and strategies that enhance achievement of educators and students alike. 
Content provided by Solution Tree
English-Language Learners Webinar The Science of Reading and Multilingual Learners: What Educators Need to Know
Join experts in reading science and multilingual literacy to discuss what the latest research means for multilingual learners in classrooms adopting a science of reading-based approach.
School & District Management K-12 Essentials Forum Get a Strong Start to the New School Year
Get insights and actions from Education Week journalists and expert guests on how to start the new school year on strong footing.

EdWeek Top School Jobs

Teacher Jobs
Search over ten thousand teaching jobs nationwide — elementary, middle, high school and more.
View Jobs
Principal Jobs
Find hundreds of jobs for principals, assistant principals, and other school leadership roles.
View Jobs
Administrator Jobs
Over a thousand district-level jobs: superintendents, directors, more.
View Jobs
Support Staff Jobs
Search thousands of jobs, from paraprofessionals to counselors and more.
View Jobs

Read Next

Science How the Webb Telescope Can Take Students Back a Long Time Ago, to Galaxies Far, Far Away
Educators can use the show-stopping images to teach about astronomy, the scientific method, and how a big project comes together.
5 min read
This image released by NASA on Tuesday, July 12, 2022, shows the edge of a nearby, young, star-forming region NGC 3324 in the Carina Nebula. Captured in infrared light by the Near-Infrared Camera (NIRCam) on the James Webb Space Telescope, this image reveals previously obscured areas of star birth, according to NASA.
This image from the James Webb Space Telescope shows the edge of a nearby, young, star-forming region in the Carina Nebula and reveals previously obscured areas of star birth, according to NASA.
NASA, ESA, CSA, and STScI via AP
Science What the Research Says Teaching Students to Understand the Uncertainties of Science Could Help Build Public Trust
Scientists want schools to do more to help students appreciate how uncertainty and variation builds scientific knowledge.
5 min read
Photo of teacher answering question from student.
Science How to Close the STEM Achievement Gap for Indigenous Students: Feature Local Culture
Study examines factors that will positively impact Indigenous students' STEM proficiency.
2 min read
Image shows a young student working on a laptop with a teacher.
Science 4 Teaching Ideas Students Will Benefit From Now and as Adults
Problem solving and entrepreneurial thinking are being integrated into STEM instruction in very creative and relevant ways.
2 min read
Students in the aviation program at Magruder High School take a look at the exposed engine of an airplane during a visit to the Montgomery County Airpark in Gaithersburg, Md., on April 6, 2022.
Students in the aviation program at Magruder High School in Rockville, Md., examine the exposed engine of an airplane during a visit to the nearby Montgomery County Airpark in April.
Jaclyn Borowski/Education Week