Opinion
Science Opinion

Want to Get Students Excited About Physics? Try Using a Glass of Water

The physics field needs more new voices
By Charles D. Brown II — November 15, 2023 4 min read
A glass with clean clear water and sharp shadows stands on a white wood table with subtle superimposed molecules.
  • Save to favorites
  • Print

The popular image of science is not about objects in front of us but about galaxies far, far away and seeming miracles—sometimes destructive, sometimes not—here on Earth. Please continue to look to the cosmos, but you don’t have to look so far away to be amazed. There is an entire microscopic world of awe-inspiring physics all around—and students need to be invited into that world from their earliest school days.

K-12 educators play a particularly important role in student development because they educate students in their formative years. In that role, they have a chance to expand students’ vision of the sciences. Young students, and society more broadly, need to be taught much more about the extraordinary parts of the universe that are right at their fingertips.

The scientific work described in the recent announcement of the 2023 Nobel Prize in Physics makes this abundantly clear. The new laureates, Pierre Agostini, Ferenc Krausz, and Anne L’Huillier, demonstrated a way to create incredibly short pulses of light that can be used to measure extremely rapid processes involving the motion or liberation of electrons in materials. The laureates’ work has provided a glimpse into the ultrafast world of electron motion.

The motion of electrons in the atoms that comprise these materials occurs over attoseconds, tiny fractions of a single second. An attosecond is 0.000000000000000001 seconds. Roughly speaking, there are as many attoseconds in one second as there are seconds in our 13.8-billion-year-old universe.

The work of these scientists reminds us that there’s something truly incredible happening inside every object we look at, whether it’s a metal fork, a glass of water, or a spacetime-bending neutron star.

Pour yourself a glass of water and sit it on the table. Look at it closely.

Most of us would describe the water as placid and lifeless, understandably so given our senses. But we would only describe it this way because of perception limited by our biology. When I look at a glass of water, I imagine a nightclub packed with people shoulder to shoulder, bumping into each other, with sound waves rippling through them from the blaring music, the nightclub teeming with heat and energy. Instead of people, however, they are molecules and the atoms that comprise them.

The nightclub description of the water is more accurate than the placid one. For each fluid ounce in the glass of water, there are roughly 1,000,000,000,000,000,000,000,000 molecules. In an 8-ounce glass, there are more water molecules than there are grains of sand on Earth. Each molecule is made of atoms, which have cores made of protons and neutrons around which electrons whiz. In the glass, these molecules collide, tumble, and spin, vibrate trillions of times per second, and the most energetic molecules near the surface shoot out into the air, never to return.

Now, that’s what I call an energy drink. How exciting—how world-transforming it would be—if there were more students entering into the physics field related to electrons, atoms, molecules, and their interactions with light, grabbing some of that energy and dispersing it in the world. Physics needs new voices—according to the Occupational Outlook Handbook, industry need will grow substantially between 2022 and 2032. Add to that the abysmal statistics for how many people of color are represented in the field, and the need to reach more widely becomes clear.

In the recent film “Oppenheimer,” we see physicists feverishly working to create a bomb that creates an enormous explosion of heat, light, and death. There’s Walter White, the murderous chemist of television’s “Breaking Bad,” who takes Heisenberg—a historically important physicist—as his alias. In both cases, science is portrayed as an agent of noise and violence.

Here in the real world, it’s easy to see wonder in the universe via astrophysics and cosmology, where physicists’ painstaking work yields beautiful images and understanding of galactic clouds, black holes, and temperature maps of the early universe, among other awe-inspiring phenomena in the cosmos. What’s right next to you is harder to see.

What’s closest to each of us is my realm of physics: atomic, molecular, and optical (AMO) physics, and condensed-matter physics. Condensed-matter physics describes the macroscopic and microscopic properties of phases of matter—gases, liquids, and solids. AMO physics describes interactions between light and matter and the properties of light itself. Together, this physics tells us why diamonds glisten, how to create lasers, and how to build the vast transatlantic optical fibers that transmit the light pulses that fuel the global internet.

Quantum physics, the physics of the tiniest length scales, revolutionized AMO and condensed-matter physics and thus our understanding of nature. The dawn of quantum physics in the early 20th century was ushered in by some physicists depicted in “Oppenheimer,” like Werner Heisenberg and Niels Bohr. Ever since, AMO and condensed-matter physicists have created increasingly simple systems. Today, we can even experiment with a single atom trapped by tweezers made of light.

Physicists are now moving toward more complex systems that are built from well-understood simple systems, such as trapped atoms or molecules, or materials made from a single atomic layer. Examples include: studying “ultracold” chemistry, where two isolated atoms form into a single molecule near absolute-zero temperature; building synthetic crystals by allowing atoms to hop around grids made of light; or building sophisticated materials by stacking single-atom thick layers of materials one on top of the other.

With these building blocks of matter at our disposal, there is so much more we can discover. Aspiring young scientists—and their teachers—need to know where we are and where we are going.

Take a look at that glass of water again. What do you see?

Events

Reading & Literacy K-12 Essentials Forum Supporting Struggling Readers in Middle and High School
Join this free virtual event to learn more about policy, data, research, and experiences around supporting older students who struggle to read.
School & District Management Webinar Squeeze More Learning Time Out of the School Day
Learn how to increase learning time for your students by identifying and minimizing classroom disruptions.
This content is provided by our sponsor. It is not written by and does not necessarily reflect the views of Education Week's editorial staff.
Sponsor
Reading & Literacy Webinar
Improve Reading Comprehension: Three Tools for Working Memory Challenges
Discover three working memory workarounds to help your students improve reading comprehension and empower them on their reading journey.
Content provided by Solution Tree

EdWeek Top School Jobs

Teacher Jobs
Search over ten thousand teaching jobs nationwide — elementary, middle, high school and more.
View Jobs
Principal Jobs
Find hundreds of jobs for principals, assistant principals, and other school leadership roles.
View Jobs
Administrator Jobs
Over a thousand district-level jobs: superintendents, directors, more.
View Jobs
Support Staff Jobs
Search thousands of jobs, from paraprofessionals to counselors and more.
View Jobs

Read Next

This content is provided by our sponsor. It is not written by and does not necessarily reflect the views of Education Week's editorial staff.
Sponsor
Science Quiz
Quiz Yourself: Evaluating Effective Science Instruction in Your District
Answer 7 questions about evaluating effective science instruction in your district.
Science Opinion Science Scores Are Down. But We Know What Would Improve Them
The when, where, and how of science instruction needs rethinking.
Emma Banay, Christine Cunningham & James Ryan
4 min read
Flat vibrant vector illustration depicting science education and learning concept. Illustration is showing different ways of learning: listening, watching, observing, exploring, experimenting, asking questions, talking and communicating, reading, drawing, and writing. The female teacher is placed on the right side and there are also two pupils each one representing different theme; one girl asking question and learning by listening  and a boy holding a hand up to answer a question.
DigitalVision Vectors/Getty
Science What's Behind the Drop in Students' Science Scores on NAEP?
Survey results from the National Assessment of Educational Progress show 8th graders do less scientific inquiry now than five years ago.
4 min read
Middle school students learn about the value and shape of matter while building containers to hold liquid during an 8th grade science class at Boys’ Latin School of Maryland on Oct. 24, 2024 in Baltimore, Md.
Eighth graders learn about the value and shape of matter while building containers to hold liquid during a science class at Boys’ Latin School of Maryland on Oct. 24, 2024, in Baltimore. Nationally, 8th graders lost ground in science, according to the 2024 National Assessment of Educational Progress.
Jaclyn Borowski/Education Week
Science Opinion Science Is Losing the Battle for America’s Trust. How Schools Can Help
I grew up a creationist and became a science educator. Here’s what I know about building trust in science.
Amanda L. Townley
8 min read
A diverse group of people building a hall of science using scientific tools, blocks, and symbols.
Islenia Mil for Education Week