Opinion
Mathematics Opinion

It Doesn’t Add Up

By Ronald A. Wolk — February 17, 2006 3 min read
  • Save to favorites
  • Print

When the latest round of uninspiring math scores on the National Assessment of Educational Progress triggered a chorus of dismay, a friend said to me, “I don’t understand why we demand that every kid take higher-order math in school. I have been a successful businessman for 40 years, I founded and ran a Fortune 500 company, and all the math I ever used were addition, subtraction, division, multiplication, and figuring percentages in my head.” I’ll bet he would do poorly on the 12th grade NAEP tests.

There is no disagreement that students should master basic math because it is important in meeting the demands of everyday life. But why should everyone study higher-order math?

Advocates argue that math is a powerful problem-solving tool, helping some people learn to think logically and reason clearly. True, but fortunately for the rest of us, it’s not the only path to clear thinking. Students can also become problem-solvers by studying the humanities—literature, history, philosophy—and by engaging in analysis, discourse, and debate.

I learned my times tables early and still use them every day. I took two years of algebra, plane and solid geometry, and trigonometry and memorized enough to squeak by with C’s, but I forgot virtually everything from those courses by the time the ink on my diploma was dry. That’s no boast; I’m not math-phobic. But I was relieved to discover that I was a “word person” and knew I’d never enter an occupation where higher-order math is required.

The question is whether we’re encouraging more kids to become scientists and engineers by requiring them to take algebra in 8th grade and higher-order math in high school.

Many powerful thinkers don’t know what a quadratic equation is, let alone how to solve one. I looked up the definition: “An equation in which one or more of the terms is squared but raised to no higher power, having the general form ax2 + bx + c = 0, where a, b, and c are constants.” Although I speak English, I couldn’t translate that to save my life.

Perhaps the more important reason for learning math is that it’s the language of science and engineering—a prerequisite to fully understanding and doing work in those areas. A growing concern is that the United States is not producing enough native scientists and engineers. Students flock to America from all over the world to study in our universities, then return home to compete with us. More and more of our technical work is being outsourced to countries like India and China. Our standard of living and our national security are undoubtedly linked to our leadership in science and technology.

The question is whether we’re encouraging more kids to become scientists and engineers by requiring them to take algebra in 8th grade and higher-order math in high school. I suspect that those who go into science and engineering in college are already on that track by the time they start high school because they became hooked on the appropriate subjects in the early grades.

Some kids do well in mathematics in elementary school. They experience the delicious satisfaction of solving the mystery, of breaking the code. As they move on to more challenging material, they begin to imagine a career in which math is crucial.

Science provokes endless questions in kids—about the stars, animals, snowflakes, fire, space, and so on. Gifted teachers can nourish this curiosity, encouraging youngsters to go as deeply into math as their talents and interests take them. But what about the students who reach 8th grade with neither an interest in nor talent for math or science? How likely is it that they will excel in (or even benefit from) courses in higher-order mathematics?

If we want more young people to become mathematicians, scientists, and engineers, then we need to find ways to awaken and nourish a passion for those subjects well before high school.

Events

This content is provided by our sponsor. It is not written by and does not necessarily reflect the views of Education Week's editorial staff.
Sponsor
College & Workforce Readiness Webinar
Smarter Tools, Stronger Outcomes: Empowering CTE Educators With Future-Ready Solutions
Open doors to meaningful, hands-on careers with research-backed insights, ideas, and examples of successful CTE programs.
Content provided by Pearson
Reading & Literacy Webinar Supporting Older Struggling Readers: Tips From Research and Practice
Reading problems are widespread among adolescent learners. Find out how to help students with gaps in foundational reading skills.
This content is provided by our sponsor. It is not written by and does not necessarily reflect the views of Education Week's editorial staff.
Sponsor
Reading & Literacy Webinar
Improve Reading Comprehension: Three Tools for Working Memory Challenges
Discover three working memory workarounds to help your students improve reading comprehension and empower them on their reading journey.
Content provided by Solution Tree

EdWeek Top School Jobs

Teacher Jobs
Search over ten thousand teaching jobs nationwide — elementary, middle, high school and more.
View Jobs
Principal Jobs
Find hundreds of jobs for principals, assistant principals, and other school leadership roles.
View Jobs
Administrator Jobs
Over a thousand district-level jobs: superintendents, directors, more.
View Jobs
Support Staff Jobs
Search thousands of jobs, from paraprofessionals to counselors and more.
View Jobs

Read Next

Mathematics Opinion Do 'High Quality' Math Materials Add Up?
A veteran math teacher explains how he judges textbooks and programs.
6 min read
The United States Capitol building as a bookcase filled with red, white, and blue policy books in a Washington DC landscape.
Luca D'Urbino for Education Week
Mathematics Precalculus Is the Fastest-Growing AP Course. That’s Reshaping K-12 Math
Schools report growing demand and success from students taking the relatively new College Board math course.
5 min read
Boston Latin Academy student Lila Conley, 16, works on a pre-calculus problem during the Bridge to Calculus summer program at Northeastern University in Boston on Tuesday, Aug. 1, 2023.
Boston Latin Academy student Lila Conley, 16, works on a precalculus problem during a summer bridge program at Northeastern University in Boston on Aug. 1, 2023. The College Board's AP Precalculus program expanded access to college-level coursework for students in high school.
Reba Saldanha/AP
Mathematics Opinion How to Help Students See the Relevance of Math
Empower students and then see how much more invested they are in the subject.
11 min read
Conceptual illustration of classroom conversations and fragmented education elements coming together to form a cohesive picture of a book of classroom knowledge.
Sonia Pulido for Education Week
Mathematics Why Word Problems Feel So Hard and What Teachers Can Do
Context is key when solving word problems, experts say.
3 min read
Photo illustration of child’s hand with pencil working on math word equations.
F. Sheehan for Education Week + Getty