Opinion
Science Opinion

Don’t Teach the Controversy

By Paul Horwitz — March 01, 2011 5 min read
  • Save to favorites
  • Print

The argument is disarming. Living organisms are often remarkably adapted for a particular purpose—so much so that it seems as if they must have been created by a purposeful designer. And, at first blush, that theory appears much more plausible than the proposition that the exquisite complexity of nature arose entirely by unplanned, natural causes. Why then do we refuse to allow the creationist model to be presented and discussed in science class as an alternative to the theory of evolution? Isn’t science supposed to be open to opposing opinions? Are we not repeating the error of those who refused to look through Galileo’s telescope for fear that they might discover something new? Why can’t we, in the words of President George W. Bush, “teach the controversy”?

The argument is a hardy perennial. An Education Week article from late last year (“Evolution Projects Yield Results,” Nov. 17, 2010) described a National Science Foundation-supported project that teaches “evolution readiness” to 4th graders by having them run virtual experiments with computer models that evolve by natural selection. As the director of that project, I feel strongly that creationism has no place in science class.

My opinion is that creationism in all its forms, including “intelligent design,” is not science; and that it is vitally important that we not teach nonscience as if it were science.

Creationism is not science because it introduces causes outside of nature in order to explain observations of nature.”

The early-20th-century physicist Wolfgang Pauli, known equally for his exclusion principle and his biting wit, once famously said of a proposed theory in a research paper, “Not only is it not right, it’s not even wrong.” The identity of the research paper that incurred Pauli’s displeasure is lost to history, but his quip is an apt description of the assertion that the adaptations of organisms can be “explained”—or “explained away”—by positing that an unknown and unknowable entity designed them that way. Such a theory can, in fact, never be proved wrong. It can never even be revised because, in contrast to evolution, which has undergone continual revision since Darwin’s day, creationism makes no testable predictions other than the trivial one that living creatures should look as though they were designed.

Creationism is not science because it introduces causes outside of nature in order to explain observations of nature. Theories like that do not foster inquiry; rather, they close off discussion. Discoveries of seemingly “designed” organisms are taken as “proof” of the theory, and observations of suboptimal design are viewed as indications that the external designer, though “intelligent” is not “perfect.” When all the fuss is over, nothing is ever discovered—or can ever be discovered—that sheds new light, connects previously disconnected data, offers new insights, or generates new knowledge.

That’s why creationism shouldn’t be taught as science, not because it’s wrong, but because it isn’t science. (Though I would certainly support, and would love to teach, a class that contrasted creationism and science in order to help students appreciate the difference.)

So why is it so important that we not teach nonscience as science?

It is important because science and nonscience are radically different, and the difference has critical implications. Scientific theories make testable predictions about the world, predictions that often extend well beyond anything the inventor of the theory had in mind.

Darwin had never heard of the DNA molecule, so he couldn’t possibly have anticipated its role in evolution. A century later, when the central function of DNA as the carrier of genetic information was discovered, Darwin’s theory of evolution predicted that the DNA of different species ought to differ in very specific ways. For example, two species that diverged from a common ancestor—say dogs and wolves—a few million years ago (relatively recently in evolutionary terms) ought to have very similar DNA. However, more distantly related species—giraffes and skunks, or snakes and butterflies—are predicted to be less similar at the molecular level because they diverged from a common ancestral species hundreds of millions of years ago. In other words, the more recently any two species diverged from their ancestral species, the more similar their DNA ought to be.

This is a powerful prediction! It opens up a whole new line of evidence, entirely unknown to Darwin and his contemporaries, that enables one to construct a “family tree” comprising all living things on earth.

The DNA evidence is accumulating rapidly, and evolution still stands tall. It turns out that subtle differences in the DNA of humans from different subpopulations may have profound implications for combating disease. Scientists are sorting out the details, but the basis of the technique is pure evolution. People who have lived for many generations in parts of the world where a certain disease is endemic have been subjected to intense selective pressure, affecting their genetic makeup. In other words, these individuals have evolved to acquire a resistance to the disease. By studying their DNA, we may be able to put that knowledge to work for the rest of us some day.

It’s an exciting approach to solving an important problem, and it would never have occurred to anyone if we had just left it at, “Living creatures look designed, so there must be a designer.” Or, “We don’t know anything about this designer, and there’s no way to find out anything, so let’s just leave it at that.”

The goal of science is to discover things, to create new knowledge, to understand new phenomena. Nonscience does none of these things. Confronted by something it can’t explain, nonscience introduces another element it doesn’t understand for the purpose of explaining what it originally could not. Not only does this lead to an infinite regress (who designed the designer?), it also eliminates, even worse, any opportunity to discover natural explanations for natural phenomena. And that makes a huge difference.

We live in an age when the extraordinary success of science has brought with it unprecedented problems that can be solved only with the help of science. For this reason alone, to allow nonscience to be taught as though it were science would be a mistake of literally global dimensions.

A version of this article appeared in the March 09, 2011 edition of Education Week

Events

This content is provided by our sponsor. It is not written by and does not necessarily reflect the views of Education Week's editorial staff.
Sponsor
Assessment Webinar
The State of Assessment in K-12 Education
What is the impact of assessment on K-12 education? What does that mean for administrators, teachers and most importantly—students?
Content provided by Instructure
Jobs January 2022 Virtual Career Fair for Teachers and K-12 Staff
Find teaching jobs and other jobs in K-12 education at the EdWeek Top School Jobs virtual career fair.
This content is provided by our sponsor. It is not written by and does not necessarily reflect the views of Education Week's editorial staff.
Sponsor
Reading & Literacy Webinar
Proven Strategies to Improve Reading Scores
In this webinar, education and reading expert Stacy Hurst will provide a look at some of the biggest issues facing curriculum coordinators, administrators, and teachers working in reading education today. You will: Learn how schools
Content provided by Reading Horizons

EdWeek Top School Jobs

Teacher Jobs
Search over ten thousand teaching jobs nationwide — elementary, middle, high school and more.
View Jobs
Principal Jobs
Find hundreds of jobs for principals, assistant principals, and other school leadership roles.
View Jobs
Administrator Jobs
Over a thousand district-level jobs: superintendents, directors, more.
View Jobs
Support Staff Jobs
Search thousands of jobs, from paraprofessionals to counselors and more.
View Jobs

Read Next

This content is provided by our sponsor. It is not written by and does not necessarily reflect the views of Education Week's editorial staff.
Sponsor
Science Whitepaper
Social and Emotional Skills in 3-D Science
In “Integrating Social and Emotional Learning into 3-D Science Classrooms,” explore the social and emotional skills that are inherent in ...
Content provided by Carolina Biological
Science Catching Up Native American Students in Science
The pandemic dealt a setback to science education for Native American students, but culturally relevant lessons could offer a path forward.
7 min read
Conceptual illustration of a lone figure not fitting into the digital environment
Vanessa Solis/Education Week and Victor Grow/iStock
Science Here's How to Make Science More Relevant for Students of Color
Students get more out of science class, these teachers say, when the lessons are linked to their own lives and communities.
5 min read
Chemistry teacher Nina Hike poses for a portrait in her classroom at George Westinghouse College Prep on Friday, Nov. 5, 2021 in Chicago, IL. Through her curriculum, Hike highlights scientific discoveries by women and people of color, and also teaches students about environmental racism.
Chemistry teacher Nina Hike poses for a portrait in her classroom at George Westinghouse College Prep on Friday, Nov. 5, 2021 in Chicago, IL. Through her curriculum, Hike highlights scientific discoveries by women and people of color, and also teaches students about environmental racism.
Taylor Glascock for Education Week
Science COVID-19 Is a Science Lesson Waiting to Happen
Teachers have more information about the virus now than in March 2020, but barriers remain to focusing on the pandemic in class.
8 min read
Conceptual illustration of sectioned off people studying a Covid-19 Virus
Vanessa Solis/Education Week and Jorm Sangsorn/iStock