Opinion
School & District Management Opinion

Next Steps for the Next Generation Science Standards

By Arthur H. Camins — July 22, 2014 6 min read
  • Save to favorites
  • Print

Years ago, a friend and colleague cautioned me: “If you want to make big demands on people, make sure you provide the support they need to achieve those goals.” Supporters of science education improvement would do well to listen to that advice.

The National Research Council’s K-12 Framework for Science Education and the Next Generation Science Standards are designed to drive dramatic rethinking and improvement of science education for all students in the United States. Now decisions at the district, state, and federal levels will determine whether the new standards will promote substantive improvement. The NRC framework and the NGSS embrace three critical ideas: The first—a political idea—is that ensuring learning opportunity and quality for all students is not just a local matter, but rather an issue that demands a comprehensive strategy. The second—a pedagogical idea—is that orchestration of science learning is a complex undertaking involving well-sequenced student engagement in the practices of scientists and engineers in the context of investigating core disciplinary ideas and making meaningful connections across disciplines. The third—a civic idea—is that science learning has an essential role in supporting informed and reasoned democratic participation.

Advocates for improvement in science and engineering learning should heed lessons learned from the cascading conflicts surrounding the Common Core State Standards. So far, the rollout of the NGSS has avoided the pitfalls associated with the common core. In that light, several observations about the science standards are in order:

• The NGSS development process has been open and transparent. It has avoided the perception of an exclusionary development process and connection to commercial interests or political agendas. It should remain so and continue to be open to critique and refinement.

• State adoption has been voluntary and not leveraged by promises of access to federal funds in the midst of a budget crisis. Heavy-handed linkage to other policies, such as value-added teacher evaluation and compensation systems, will doom the potential for improvement.

• The guiding premises of the framework and the NGSS are already widely embraced, but still not widely implemented or supported with resources. Adoption at the state and district levels will spur improvement only by avoiding prescriptive overspecification, while providing sufficient time and resources.

So far, 12 of the 26 states (and the District of Columbia) originally committed to NGSS adoption have signed on. This may be a good-news/bad-news signal. The absence of federal pressure may mean that there will be no headlong national rush to the consequential assessments that have undermined thoughtful consideration, testing, and revision of the common-core standards, which cover English/language arts and math. Alternatively, the slow pace of the science standards’ adoption suggests that careful planning for systemic improvement of science education may be put off for too many years. That would delay the curriculum development and professional discourse critical to rigorous testing and evidence-based refinement.

Fortunately, earlier this year, the National Research Council’s Board on Testing and Assessment released a thoughtfully developed report with recommendations, which if embraced by states and districts, can move improvements forward. The report highlights three roles for assessment: classroom assessments, which are designed to inform instructional decisionmaking, planning, and grading; monitoring assessments, to audit student learning over time; and indicators that evaluate the effectiveness of science instructional programs and the equity of students’ opportunity to learn science.

The defining characteristics of the board’s report are research-based confidence and optimism mediated by realism and refreshing humility about the challenges of successful implementation. Just before describing their formal recommendations, the authors write: “However, we acknowledge the challenge of this new approach to assessment and building assessment systems. Implementing the recommended new approaches will require substantial changes, and it will take time. For the changes to be fully realized, all parts of the education system—including curriculum, instruction, assessment, and professional development—will need time to evolve. Thus, a key message is that each step needs to be taken with deliberation.”

Five other state actions will enable the nation’s science teachers to embrace rather than ignore or rebel against the Next Generation Science Standards.

First, states should resist the temptation to tinker with the standards. It is surely not a perfect document, but second-guessing on the front end will most likely turn us back to where we have been rather than advancing new ideas. Some of the framework’s topic placements challenge current conceptions about when students are able to grasp certain concepts. Therefore, teachers will need freedom to try new ideas without the threat of a punitive evaluation.

Second, states should interpret NGSS performance standards as they were intended—examples of what integration of the three framework strands and incorporation of engineering might look like in practice. If we remember that the performance standards are not specifications for particular assessment items or learning activities, than it will be possible to respect teachers’ expertise and autonomy. Flexibility will enable the experimentation needed to develop instructional strategies, curricular materials and assessments, and the research required to determine relative effectiveness.

Third, states that adopt the standards must declare a moratorium on high-stakes science testing. Anything less will undermine implementation and violate all the board’s cautions.

Fourth, from an accountability perspective, it is important to recognize two characteristics of the new science standards. They represent a new learning sequence in which understanding builds over a child’s entire K-12 educational experience. Therefore, quick achievement of its expectations for students at all grade levels is unrealistic. That will take time. However, the formative classroom and monitoring features of assessment will, if implemented deliberately and carefully as recommended by the board, provide valuable daily and periodic benchmark evidence of progress. In addition, some of the standards stretch current ideas about concepts students are able to master at particular grade levels. These aspirational expectations require teachers to adopt a practical, action-oriented research perspective. The monitoring feature of assessment, if not distorted by consequential testing at the individual teacher level, will yield valuable evidence for adjustments to instructional practice, curriculum, testing, and refinement of the standards themselves.

Fifth, federal, state, and district policymakers should give first priority to ensuring equity and adequacy of resources and long-term sustained professional development. Funds should be allocated on a noncompetitive basis and in ways that mitigate current resource inequities. We do not need a science Race to the Top that consumes states’ time and resources and results in few winners and many losers.

Several years ago, I led a National Science Foundation-funded research project that investigated the impact of embedded formative-assessment strategies. On one occasion, I was working with a group of 4th grade teachers who were examining samples of student work.

One teacher said, “You know, this was much easier last year.”

“Why?” I inquired.

“I knew less,” she replied.

Even though the work was new, time-consuming, and challenging, the project’s teachers embraced the complexity of inquiry-based science, making sense of student thinking and providing formative feedback to students. They did not write the curriculum we were using, nor did they invent the assessment tasks. However, they became invested in and committed to the work because it was risk-free. Crucially, the teachers were engaged members of a community of peers with the time to think and share ideas. They had the space to try, to err, and to try again.

This is the only way in which the Next Generation Science Standards will be successful as a catalyst for improvement in science literacy in the United States.

A version of this article appeared in the August 06, 2014 edition of Education Week

Events

Mathematics Live Online Discussion A Seat at the Table: Breaking the Cycle: How Districts are Turning around Dismal Math Scores
Math myth: Students just aren't good at it? Join us & learn how districts are boosting math scores.
This content is provided by our sponsor. It is not written by and does not necessarily reflect the views of Education Week's editorial staff.
Sponsor
Student Achievement Webinar
How To Tackle The Biggest Hurdles To Effective Tutoring
Learn how districts overcome the three biggest challenges to implementing high-impact tutoring with fidelity: time, talent, and funding.
Content provided by Saga Education
This content is provided by our sponsor. It is not written by and does not necessarily reflect the views of Education Week's editorial staff.
Sponsor
Student Well-Being Webinar
Reframing Behavior: Neuroscience-Based Practices for Positive Support
Reframing Behavior helps teachers see the “why” of behavior through a neuroscience lens and provides practices that fit into a school day.
Content provided by Crisis Prevention Institute

EdWeek Top School Jobs

Teacher Jobs
Search over ten thousand teaching jobs nationwide — elementary, middle, high school and more.
View Jobs
Principal Jobs
Find hundreds of jobs for principals, assistant principals, and other school leadership roles.
View Jobs
Administrator Jobs
Over a thousand district-level jobs: superintendents, directors, more.
View Jobs
Support Staff Jobs
Search thousands of jobs, from paraprofessionals to counselors and more.
View Jobs

Read Next

School & District Management Opinion 3 Steps for Culturally Competent Education Outside the Classroom
It’s not just all on teachers; the front office staff has a role to play in making schools more equitable.
Allyson Taylor
5 min read
Workflow, Teamwork, Education concept. Team, people, colleagues in company, organization, administrative community. Corporate work, partnership and study.
Paper Trident/iStock
School & District Management Opinion Why Schools Struggle With Implementation. And How They Can Do Better
Improvement efforts often sputter when the rubber hits the road. But do they have to?
8 min read
Image shows a multi-tailed arrow hitting the bullseye of a target.
DigitalVision Vectors/Getty
School & District Management How Principals Use the Lunch Hour to Target Student Apathy
School leaders want to trigger the connection between good food, fun, and rewards.
5 min read
Lunch hour at the St. Michael-Albertville Middle School West in Albertville, Minn.
Students share a laugh together during lunch hour at the St. Michael-Albertville Middle School West in Albertville, Minn.
Courtesy of Lynn Jennissen
This content is provided by our sponsor. It is not written by and does not necessarily reflect the views of Education Week's editorial staff.
Sponsor
School & District Management Sponsor
Insights from the 15 Superintendents Shaping the Future
The 2023-2024 school year represents a critical inflection point for K-12 education in the United States. With the expiration of ESSER funds on the horizon and the integration of artificial intelligence (AI) into teaching and learning processes, educators and administrators face a unique set of challenges and opportunities.
Content provided by Paper
Headshots of 15 superintendents that Philip Cutler interviewed
Image provided by Paper