Opinion
Science Opinion

Is STEM Education in Permanent Crisis?

By Michael Marder — October 25, 2016 4 min read
  • Save to favorites
  • Print

In 1983, “A Nation at Risk” raised grave concerns that America’s schools, particularly in the academic area we now call STEM, were damaging the country’s ability to compete. “If an unfriendly foreign power had attempted to impose on America the mediocre educational performance that exists today, we might well have viewed it as an act of war,” warned the report from a federally appointed commission. Twenty-two years later, “Rising Above the Gathering Storm,” a report from the National Academy of Sciences, leveled a similar charge: "[O]ur overall public school system—or more accurately 14,000 systems—has shown little sign of improvement, particularly in mathematics and science.”

How can education in science and mathematics be in such crisis for so long? If fixing the crisis has the urgency of responding to foreign attack, how can it be that after 33 years of warnings, we are still stuck?

Is STEM Education in Permanent Crisis?: Perpetual and wide-spread STEM teacher shortages in the Unites States are holding students back, writes UTeach’s Michael Marder.

For some student populations, there is improvement. The best measure of long-term performance is the National Assessment of Educational Progress (NAEP) Long-Term Trend Assessment. For 9- and 13-year-old white, black, and Hispanic students, math scores have increased since they were first measured by NAEP in 1978. Schools moved racial and ethnic groups in middle school ahead by around four years of learning: In fact, the scores of black and Hispanic 13-year-olds in 2012 almost matched the scores of black and Hispanic 17-year-olds from 1978.

But high school Long-Term Trend NAEP scores tell another story: Flat since 1990, NAEP math scores understate the scale of our problem. The United States stands apart from Europe and Asia in its conception of how much science and math is appropriate for all students. The United States has a culture of lower expectations for its students—one that will be hard to change, even if we want to.

Our country’s single biggest obstacle is a perpetual STEM teacher shortage."

Our country’s single biggest obstacle is a perpetual STEM teacher shortage. In surveys of school districts, openings in physics, chemistry, and math are regularly near the top of the list of positions hardest to fill. As a result, a large percentage of high school STEM teachers have neither a college major nor minor in their main assignment, or they lack full certification. Forty percent of math teachers fall into one of these categories. In physics, chemistry, and earth science, the number is over 60 percent.

Why do we have this STEM teacher shortage? It exists because incentives to change it are weak. For students who major in a STEM subject, the decision to become a teacher can add time and cost to their degrees. Teaching jobs pay tens of thousands of dollars less per year than nonteaching jobs in science, technology, engineering, or math. For university colleges of science, where all STEM teachers take content coursework or get their degrees, every staff or faculty position devoted to preparing STEM teachers is one not devoted to STEM researchers bringing in grants.

BRIC ARCHIVE

How do we ensure that all students have access to well-trained and qualified science teachers? Education Week Commentary invited teachers, professors, and teacher-educators across the country to weigh in on this pressing challenge. This special section is supported by a grant from The Noyce Foundation. Education Week retained sole editorial control over the content of this package; the opinions expressed are the authors’ own, however.

Read more from the package.

For many companies reliant on a strong STEM workforce to remain competitive, there is an inexpensive alternative to using their money and influence to solve the STEM teacher shortage: Hire scientists and engineers born and educated abroad. Fifty-three percent of the Ph.D.-level computer scientists in this country were born abroad, and 75 percent of Ph.D.-level aerospace engineers. Those are staggering numbers.

In 2005, the “Gathering Storm” report suggested a coordinated response to the STEM crisis, including the goal of producing 10,000 new STEM teachers a year by providing $20,000 a year in college scholarships for STEM majors who committed to teaching; $10,000-a-year salary increases for STEM teachers in hardest-to-staff schools; and $5 million incentive packages to universities to create programs for STEM majors to get bachelor’s degrees and teaching certificates simultaneously.

The report highlighted UTeach, which I co-founded in the late 1990s and currently co-direct. UTeach integrates STEM bachelor’s degrees with teacher certification and has expanded to 45 universities in this country. More than 85 percent of our graduates become classroom teachers, and more than 60 percent of them are in schools with majority low-income populations. Retention rates are strong: After five years, more than 80 percent of those who began teaching are still in schools.

Percentage of STEM Majors Who Do Not Want to Teach

When asked, “How interested are you in being a middle or high school teacher?,” nearly half or more than half of the 6,000 current and recently graduated STEM majors surveyed responded “not at all interested.”

Source: Michael Marder and Panel on Public Affairs of the American Physical Society, 2016

BRIC ARCHIVE

These efforts—and those of other programs—could enable the United States to greatly reduce the STEM teacher shortage. A recent survey of more than 6,000 current and recently graduated STEM majors, which was sponsored by the American Physical Society, indicates that 35 to 55 percent would consider middle or high school teaching. There is also encouraging news in the finding of a relationship between STEM departments where college faculty simply discuss the possibility of teaching and increased student interest. Furthermore, 80 percent of those considering teaching say that incentives such as scholarships would make them more likely to teach.

But federal scholarships for STEM teachers are funded at less than 10 percent of the level “Gathering Storm” recommended, and what STEM majors and new STEM teachers say they most want are better working conditions and higher salaries. These are the hardest goals to achieve.

The current election season underscores the profound discontent with economic prospects and income inequality in the United States. There is no clear solution on how to address it. But education must be part of the solution. Kids from all economic classes and ethnic groups must have true access to fields ranging from computer science to finance. And there will be no cheap online fixes. Unless we finally resolve to pay what it takes to prepare and retain teachers for key STEM subjects, the next 30 years, like the last 30 years, will find us still shocked that our kids are behind, held back by our permanent STEM crisis.

Coverage of science learning and career pathways is supported in part by a grant from The Noyce Foundation, at www.noycefdn.org. Education Week retains sole editorial control over the content of this coverage.
A version of this article appeared in the October 26, 2016 edition of Education Week as STEM Education: A Permanent Crisis?

Events

School Climate & Safety K-12 Essentials Forum Strengthen Students’ Connections to School
Join this free event to learn how schools are creating the space for students to form strong bonds with each other and trusted adults.
This content is provided by our sponsor. It is not written by and does not necessarily reflect the views of Education Week's editorial staff.
Sponsor
IT Infrastructure & Management Webinar
Future-Proofing Your School's Tech Ecosystem: Strategies for Asset Tracking, Sustainability, and Budget Optimization
Gain actionable insights into effective asset management, budget optimization, and sustainable IT practices.
Content provided by Follett Learning
This content is provided by our sponsor. It is not written by and does not necessarily reflect the views of Education Week's editorial staff.
Sponsor
Budget & Finance Webinar
Innovative Funding Models: A Deep Dive into Public-Private Partnerships
Discover how innovative funding models drive educational projects forward. Join us for insights into effective PPP implementation.
Content provided by Follett Learning

EdWeek Top School Jobs

Teacher Jobs
Search over ten thousand teaching jobs nationwide — elementary, middle, high school and more.
View Jobs
Principal Jobs
Find hundreds of jobs for principals, assistant principals, and other school leadership roles.
View Jobs
Administrator Jobs
Over a thousand district-level jobs: superintendents, directors, more.
View Jobs
Support Staff Jobs
Search thousands of jobs, from paraprofessionals to counselors and more.
View Jobs

Read Next

Science Opinion STEM Is Failing People of Color. What Educators Can Do
Students, especially students of color, need fresh incentives to pursue the fields, explains a STEM professor.
Ebony O. McGee
5 min read
Illustration of a scientist holding a giant test tube.
iStock/Getty + Vanessa Solis/Education Week
This content is provided by our sponsor. It is not written by and does not necessarily reflect the views of Education Week's editorial staff.
Sponsor
Science Sponsor
International Day of Education: Breaking Stigmas About STEM
Scientific and technical progress in our nation is rapidly advancing, requiring an increased demand for STEM workers.
Content provided by Henkel
Youth students in a lab classroom examining hair extensions with Henkel instructors supervision
Photo provided by Henkel
Science This District Hopes Seeing What AI Can Do Will Spur More Students to Take Computer Science
Districts including Florida's Broward County put an AI twist on coding activities during an annual computer science event.
2 min read
Students creating programs while using laptop
E+ / Getty
Science Aligned Science Curriculum, Better Scores? Research Finds a Connection
A WestEd evaluation of the Amplify Science curriculum found it raised student performance on NGSS-aligned assessment questions.
4 min read
Tele Phillips, left, and Saniyah Sims react as they cut into a bullfrog they are dissecting during a hands-on learning experience for students from the Malone Center on April 19, 2023, at the Lincoln Children's Zoo in Lincoln, Neb. The Science Focus Program Student Council arranged two days of a hands-on learning experience for elementary students from the Malone Center.
Tele Phillips, left, and Saniyah Sims react as they cut into a bullfrog they are dissecting during a hands-on learning experience for students on April 19, 2023, at the Lincoln Children's Zoo in Lincoln, Neb.
Kenneth Ferriera/Lincoln Journal Star via AP