Opinion
Professional Development Opinion

The Key to Good Science Teaching

By Kirsten Daehler — October 25, 2016 4 min read
  • Save to favorites
  • Print

Think back to learning about science in your early school years. What experiences stand out? What excited you or shut you down? What inspired you to learn more?

I often use these questions to launch professional learning with administrators, instructional coaches, and teachers. Some have exceptionally vivid memories of engaging science at school, from experimenting with pill bugs to blowing something up. But just as many remember reading uninspiring textbooks and answering end-of-chapter questions.

The takeaway from such anecdotes is clear: Good teaching matters, and it’s tough to teach science well. An effective science lesson requires planning engaging activities, navigating tricky science concepts, anticipating and working with students’ preconceptions and misconceptions, and making difficult decisions on the fly. Good teaching is an art-one performed by those with specialized knowledge and skills.

The Key to Good Science Teaching: Good continuous learning for science teachers looks a lot like what we want for students, writes researcher Kirsten Daehler.

The adoption of new standards in many states-such as the Next Generation Science Standards-adds greater complexities for teachers. These standards shift expectations for how students learn science and often bring significant changes in curriculum and classroom practices. Many science teachers already lack “sufficiently rich experiences” with content in the science discipline they currently teach, according to a 2015 National Academy of Sciences report. This problem is especially significant both at the elementary level and in schools serving predominantly low-income student populations. But the problem is by no means limited to the elementary grades. Currently, two out of every five high schools aren’t offering physics because they don’t have qualified teachers.

The new Every Student Succeeds Act calls for top-notch science teachers for all students. But how can we get there? The key is continuous learning. And the quality of that continuing education matters every bit as much as the duration.

Good teaching matters, and it's tough to teach science well."

The National Science Foundation and the U.S. Department of Education have championed rigorous research and development efforts to understand how best to support science learning for teachers and students alike. The 2015 National Academy of Sciences report concludes the most effective professional learning for science teachers focuses on content rather than just pedagogy; entails active learning; provides consistency across learning experiences and with school, district, and state policies; has sufficient duration to allow repeated practice and reflection on classroom experiences; and brings together teachers with similar experiences or needs.

Understanding the ingredients of high-quality professional learning is essential. But many districts and schools lack the in-house expertise to ensure teachers are thoroughly grounded in life, earth, and physical science. To make up for this deficit, many local education agencies have successfully partnered with outside organizations to provide content expertise that complements inhouse support from district instructional coaches, lead teachers, and staff developers.

BRIC ARCHIVE

How do we ensure that all students have access to well-trained and qualified science teachers? Education Week Commentary invited teachers, professors, and teacher-educators across the country to weigh in on this pressing challenge. This special section is supported by a grant from The Noyce Foundation. Education Week retained sole editorial control over the content of this package; the opinions expressed are the authors’ own, however.

Read more from the package.

In my own work at one such nonprofit educational organization, I direct Making Sense of SCIENCE-a professional-learning project that has a proven record of deepening teacher knowledge, transforming classroom practices, and measurably increasing student achievement in science.

The secret sauce is offering teachers first-hand learning experiences that are science-rich, cognitively challenging, collaborative, and fun-not unlike what we want for our K-12 students. Many teachers have never learned science in this way, so reading a book, listening to a webinar, or attending a workshop is inadequate. Instead, teachers benefit from actively engaging in scientific practices, such as asking questions, gathering and analyzing data, and engaging in scientific argumentation. We use written cases of practice-similar to those used in business, medicine, and law-to foster peer-to-peer conversations about students and develop teachers’ professional decisionmaking. Finally, we empower teachers to take responsibility for their own learning and to develop their identities as lifelong learners who are part of a professional community.

For their part, regional groups-such as county offices of education or other intermediate agencies-and states can also invest in building capacity in science education. Michigan is already taking such an approach. The Michigan Mathematics and Science Centers Network deploys science leaders from 33 regions across the state to provide science professional development to educators, serving large urban districts such as Detroit as well as more rural remote counties in the north. A number of other states, including New Mexico and Texas, are also appropriating legislative funds earmarked to train a network of science leaders who, in turn, provide quality science professional learning at the local level.

This effort is absolutely worthwhile. Research suggests that teachers who feel successful and supported in their work are more likely to stay in the profession-yielding significant fiscal advantages. The researcher Richard Ingersoll has calculated that the revolving door of teacher turnover costs school districts upwards of $2.2 billion a year. More importantly, our students deserve high-quality science education that is inspiring, memorable, and prepares them for college, career, and life. Ensuring more professional-learning opportunities for teachers will go a long way toward helping us realize these successes.

Coverage of science learning and career pathways is supported in part by a grant from The Noyce Foundation, at www.noycefdn.org. Education Week retains sole editorial control over the content of this coverage.
A version of this article appeared in the October 26, 2016 edition of Education Week as Good Science Teaching Requires Continuous Learning

Events

Special Education Webinar Reading, Dyslexia, and Equity: Best Practices for Addressing a Threefold Challenge
Learn about proven strategies for instruction and intervention that support students with dyslexia.
This content is provided by our sponsor. It is not written by and does not necessarily reflect the views of Education Week's editorial staff.
Sponsor
School & District Management Webinar
Leading Systemic Redesign: Strategies from the Field
Learn how your school community can work together to redesign the school system, reengineer instruction, & co-author personalized learning.
This content is provided by our sponsor. It is not written by and does not necessarily reflect the views of Education Week's editorial staff.
Sponsor
Personalized Learning Webinar
No Time to Waste: Individualized Instruction Will Drive Change
Targeted support and intervention can boost student achievement. Join us to explore tutoring’s role in accelerating the turnaround. 
Content provided by Varsity Tutors for Schools

EdWeek Top School Jobs

Teacher Jobs
Search over ten thousand teaching jobs nationwide — elementary, middle, high school and more.
View Jobs
Principal Jobs
Find hundreds of jobs for principals, assistant principals, and other school leadership roles.
View Jobs
Administrator Jobs
Over a thousand district-level jobs: superintendents, directors, more.
View Jobs
Support Staff Jobs
Search thousands of jobs, from paraprofessionals to counselors and more.
View Jobs

Read Next

Professional Development PD Supergroup Is Official: ASCD Members Approve Merger With ISTE
Richard Culatta, currently the CEO of ISTE, will lead the new organization.
2 min read
Image of two halves of an arrow merging.
matdesign24/iStock/Getty
Professional Development Beyond Just Surveys: Why Educators Should Shadow Their Students
Shadowing kids is a powerful way to get a students’-eye-view of school, said panelists at EdWeek's "Seat at the Table" webinar.
1 min read
Image of an adult and student talking as they walk down a school hallway.
kali9/E+
Professional Development Opinion How to Elevate the Voices of Teachers. Try Narrative Pedagogy
The narration of a story can serve as a powerful mechanism for transforming learning.
Rebecca Thomas & Steve Saville
7 min read
shutterstock 276696266
Shutterstock
Professional Development What Works—and What Doesn't—in Teacher PD
PD frequently misses the mark. But researchers have learned how to make it count for teachers—and some of their tips are low cost.
7 min read
Young Black girl giving her teacher a high five in a classroom.
E+/Getty