Federal

Lessons Drawn From Sputnik 50 Years Later

By Sean Cavanagh — September 25, 2007 8 min read

Fifty years ago, with the Soviet Union’s launch of the Sputnik satellite, millions of Americans found themselves peering anxiously into the night sky—and also looking inward, as they reconsidered previously cozy assumptions about their nation’s technological and educational superiority.

The 184-pound, unmanned aluminum beacon lasted just three months in orbit. But its legacy resonates to this day among U.S. educators and policymakers, who say lessons can be drawn from that Cold War-era milestone, even if they disagree on what those lessons are.

Elected officials and business leaders continue to invoke Sputnik, which shot into space a half-century ago next week, on Oct. 4, 1957, in their calls to meet foreign economic competition by improving the skills of American students in mathematics, science, and other subjects.

Just last month, members of Congress in both parties referred to Sputnik as they approved the America COMPETES Act, which calls for billions of dollars in new spending on math and science education.

A Search for Answers in Science and Math
Lessons Drawn From Sputnik 50 Years Later
Commentary: The Sputnik Effect
Engineering a Blueprint for Success
Grants Modeled on Reading First Aim to Bolster K-8 Math Teaching
R&D Project on Algebra Software Seen to Show Promise
Parents Less Worried Than Experts Over Math, Science

“Russia was beating us. They had put a satellite into orbit,” Sen. Michael B. Enzi of Wyoming, the ranking Republican on the Senate education committee, said in promoting the bill, which he co-sponsored. “Today, we are again being challenged.”

“If our students and workers are to have the best chance to succeed in life, and employers [are] to remain competitive,” Mr. Enzi added, “we must ensure that everyone has the opportunity to achieve academically.”

Many observers see parallels, but also clear differences, between the U.S. response to Sputnik, which prompted a wave of federal spending on math and science curricula, and today, when the challenges facing the United States in the global economy are more complicated.

“It’s more of a slow, creeping crisis,” said Craig Barrett, the chairman of the Intel Corp., a Silicon Valley computer-technology giant. Mr. Barrett, who has called for more emphasis on math and science education, says there is a greater challenge now in convincing the public of the need to improve in those areas.

“We’re not going to see another Sputnik,” Mr. Barrett said in an interview last week. “Absolutely, it’s more difficult.”

Economic Threats

Mr. Barrett joined federal officials and business executives at a National Summit on American Competitiveness, held Sept. 18 in Washington, one of many events in recent years in which educators and others have sought to draw a link between K-12 academic skills and U.S. business growth and innovation. The summit was sponsored by the U.S. Department of Commerce.

Some attendees who advocate improved science, technology, engineering, and math, or STEM, education said policymakers could seize on the public’s understanding of—and unease about—the changing global economy to drive home the importance of those subjects.

“This country reacts to [national security] threats. But it also reacts to economic threats,” said H. Frederick Dylla, the executive director of the American Institute of Physics, an advocacy organization in College Park, Md. “There are many parallels” with Sputnik, he said. Economic issues are “a similar kind of bellwether.”

‘Sense of Crisis’

The launch five decades ago of Sputnik I—the first man-made satellite to orbit the Earth—is widely viewed as having kick-started the space race between the United States and the U.S.S.R., as well as having accelerated the arms race between the Cold War superpowers.

Equipped with a radio beacon and antennae, Sputnik was able to orbit the Earth in about 1½ hours, according to an account by the National Aeronautics and Space Administration. Contrary to popular belief, scientists say the beachball-size satellite itself was too small to be seen with the naked eye from Earth, though the rocket that accompanied it was.

How Much Is Enough?

70% of parents polled in Kansas and Missouri say that their children are being taught the right amount of math and science in school.

25% say more math and science are needed.

2% say less math and science should be taught.

SOURCE: Public Agenda

The Soviets’ accomplishment shocked most members of the American scientific and political communities. While historians have since cast doubts on the satellite’s usefulness as a tool for conducting surveillance—despite U.S. concerns at the time—there is no disputing the alarm it created among the public.

Teachers interrupted classes to tell students about Sputnik’s launch. Schools broadcast the news over their public-address systems.

Daniel H. Yergin, a Pulitzer Prize-winning author and an expert on energy issues, was a student during that era. He recalled in an interview how the principal at his school in Los Angeles brought together 7th graders whom he regarded as talented in math, including Mr. Yergin, and their parents.

Rather than moving into 8th grade math the next year, the principal told them, the students would plunge directly into high school math, Mr. Yergin recounted. Circumstances demanded it.

“Sputnik was really a shock to the nation’s confidence,” said Mr. Yergin, the chairman of Cambridge Energy Research Associates, a Massachusetts-based consulting company. “There was this palpable sense of crisis across America.”

Impact on Curriculum

The event also prompted a broad response from the federal government, which in the years that followed made an unprecedented investment in precollegiate curriculum and teacher development.

Much of that investment was made in the National Science Foundation, which supported the creation and revision of curricula in biology, chemistry, physics, and math. Efforts later spread to the social sciences.

Some of the curricula, such as those that promoted the need for hands-on student experiments in science, won praise and continue to influence classroom practice. Others were criticized and faded from use.

U.S. policymakers today could draw inspiration from the sense of unity on school issues that emerged after Sputnik, said Susan F. Sclafani, a former assistant secretary for vocational education in the current Bush administration.

But another lesson was that the government needs to set strong criteria for judging the effectiveness of school curricula and programs, argued Ms. Sclafani, who believes that such oversight was largely missing from the federal efforts that occurred after Sputnik.

Ms. Sclafani also believes that too much of the nation’s focus in the years after Sputnik was on serving high-achieving students, rather than raising standards for all students.

“It was a very elitist approach,” she said, and the push for improvement “never got down to all kids.”

According to Ms. Sclafani, U.S. officials now need a strategy to demand more from both the overall student population and the most talented students. That could be partly accomplished, she said, by combining improved, more focused teaching, such as through the use of math and science specialists in elementary schools, and creating new opportunities for gifted students.

Other experts, such as George Hein, who worked on one of the post-Sputnik projects on science curriculum, say the federal education commitment during that period was more egalitarian than critics acknowledge. Those efforts, he said, helped expand the teaching of basic science in elementary schools.

Seeking Inspiration

The attitude, post-Sputnik, was that “having science education for everybody was a part of having a healthy democracy,” said Mr. Hein, now a professor emeritus of education at Lesley University, in Cambridge, Mass.

Dennis M. Bartels, the executive director of the Exploratorium, a science museum in San Francisco, credits Sputnik-era curricula with placing a greater emphasis on classroom strategies that were written with the needs of classroom teachers, rather than academic scholars, in mind.

Curriculum today should be crafted with the same spirit of pragmatism, he said.

“It was a great period of experimentation,” said Mr. Bartels, who formerly developed NSF-supported curricula, though not in the period immediately following Sputnik. “Curriculum was developed for real kids and real circumstances.”

While Sputnik provided teachers in the late 1950s and the 1960s with a galvanizing event to get students interested in math and science, many current observers worry that enthusiasm for those subjects among students has dimmed.

Those concerns were underscored by the results of a public-opinion survey released last week. It found that students and parents in the region surveyed were largely satisfied with the level of science and math education offered in schools, in contrast to the views of the many researchers and advocates who say schools should be demanding more.

‘More Jaded Now’

Jeff Adkins, a physics and astronomy teacher at Deer Valley High School, in Antioch, Calif., said students of the early 21st century are less likely to be drawn into science by a single, landmark event like Sputnik.

Mr. Adkins typically talks about the impact of the Soviet satellite once a year during his classes.

He sometimes uses the 1999 movie “October Sky,” the true story of a West Virginia boy’s determination to launch a homemade rocket in the wake of Sputnik, to help explain the event’s relevance.

“We’re more jaded now,” Mr. Adkins said. “You can’t [use] a single stunt to get kids motivated. You have to have something more personal.”

One strategy that has worked for him is the use of independent science projects. He asks students to conduct open-ended projects that can focus either on conducting research or explaining a physics or astronomy issues to their classmates.

Past projects have examined such varied topics as the Spitzer Space Telescope, which NASA launched in 2003; the Mars Global Surveyor, which provided images of the red planet; and gender bias in astronomy.

“It’s targeting kids, by getting them to work on a project they have a vested interest in,” Mr. Adkins explained. “They have ownership of it.”

Related Tags:

Coverage of mathematics, science, and technology education is supported by a grant from the Ewing Marion Kauffman Foundation at www.kauffman.org.

Events

This content is provided by our sponsor. It is not written by and does not necessarily reflect the views of Education Week's editorial staff.
Sponsor
Professional Development Webinar
Building Leadership Excellence Through Instructional Coaching
Join this webinar for a discussion on instructional coaching and ways you can link your implement or build on your program.
Content provided by Whetstone Education/SchoolMint
Teaching Webinar Tips for Better Hybrid Learning: Ask the Experts What Works
Register and ask your questions about hybrid learning to our expert panel.
This content is provided by our sponsor. It is not written by and does not necessarily reflect the views of Education Week's editorial staff.
Sponsor
Families & the Community Webinar
Family Engagement for Student Success With Dr. Karen Mapp
Register for this free webinar to learn how to empower and engage families for student success featuring Karen L. Mapp.
Content provided by Panorama Education & PowerMyLearning

EdWeek Top School Jobs

Superintendent, Mount Pleasant CSD
Thornwood, New York
Hazard, Young, Attea & Associates
Instructional Designer Level 2
United States
K12 Inc.
Director of Headstart
New Haven, CT, US
New Haven Public Schools
Director of Headstart
New Haven, CT, US
New Haven Public Schools

Read Next

Federal Biden Announces Goal to Get Educators the COVID-19 Vaccine This Month
President Joe Biden pushes states to get educators at least one dose by the end of March to help schools resume in-person learning.
4 min read
John Battle High School teacher Jennifer Daniel receives her COVID-19 vaccine on Jan. 11, 2021. Teachers received their first vaccine during an all-day event at the Virginia Highlands Higher Education Center in Abingdon, Va.
John Battle High School teacher Jennifer Daniel receives her COVID-19 vaccine on Jan. 11, 2021. Teachers received their first vaccine during an all-day event at the Virginia Highlands Higher Education Center in Abingdon, Va.
David Crigger/Bristol Herald Courier via AP
Federal Explainer Miguel Cardona, U.S. Secretary of Education: Background and Achievements
Background and highlights of Miguel Cardona's tenure as the twelfth U.S. Secretary of Education.
Education Week Library
2 min read
Miguel Cardona, President-elect Joe Biden's nominee for Secretary of Education, speaks after being introduced at The Queen Theater in Wilmington, Del., on Dec. 23, 2020.
Miguel Cardona, U.S. Secretary of Education, speaks after being put forward for the position by then-President-elect Joe Biden in December 2020.
Carolyn Kaster/AP
Federal Senate Confirms Miguel Cardona as Education Secretary
The former Connecticut education commissioner got his start as an elementary school teacher and was a principal and school administrator.
2 min read
Miguel Cardona, President-elect Joe Biden's nominee for Secretary of Education, speaks after being introduced at The Queen Theater in Wilmington, Del., Wednesday, Dec. 23, 2020.
Miguel Cardona was confirmed by the Senate to serve as U.S. Secretary of Education. The former Connecticut education commissioner has worked as a teacher, principal, and district administrator.
Carolyn Kaster/AP
Federal Biden Legal Team Steps Back From Trump Stance on Transgender Female Sports Participation
The Education Department's office for civil rights pulls a letter that said Connecticut's transgender-inclusive policy violates Title IX.
4 min read
Bloomfield High School transgender athlete Terry Miller, second from left, wins the final of the 55-meter dash over transgender athlete Andraya Yearwood, far left, and other runners in the Connecticut girls Class S indoor track meet at Hillhouse High School in New Haven, Conn on Feb. 7, 2019. Transgender athletes are getting an ally in the White House next week as they seek to participate as their identified gender in high school and college sports. Attorneys on both sides say they expect President-elect Joe Biden’s Department of Education will switch sides in legal battles that could go a long way in determining whether transgender athletes are treated by the sex on their birth certificates or by how they identify.
Bloomfield High School transgender athlete Terry Miller, second from left, wins over transgender athlete Andraya Yearwood, far left, and other runners in an event in New Haven, Conn. The two transgender athletes are at the center of a legal fight in Connecticut over the participation of transgender female athletes in girls' or women's sports.
Pat Eaton-Robb/AP