Lest Science Be Left Behind

Navigating a 'potentially perilous trap' in federal education legislation.

Article Tools
  • PrintPrinter-Friendly
  • EmailEmail Article
  • ReprintReprints
  • CommentsComments
Navigating a 'potentially perilous trap' in federal education legislation.

Built into the massive federal education law signed by President Bush a little more than a year ago, the "No Child Left Behind" Act of 2001, is a little- discussed but potentially perilous trap for states and school districts. In an effort to hold schools more accountable for student achievement, the law mandates a schedule for annual testing of what students know and are able to do in a trio of subject areas. By 2005-06, states must test students in reading and mathematics. But—and here lies the rub—the testing of students in science need not occur until two years later, in 2007-08.

Unfortunately, this delay on science opens the door to numerous decisions by educators and policymakers that could endanger the already tenuous grasp that U.S. students and their teachers have on science.

The other side of the federal coin, however, reveals that two years of "extra" time represent a valuable opportunity for those who care about precollegiate science and its attendant instructional, curricular, professional-development, assessment, and educational research issues. That's where attention over the next few years ought to be focused.

The warning signs on science have been as unavoidable as the blaring of a car alarm. In the 1990s, the Third International Mathematics and Science Study showed that although U.S. 4th graders did relatively well in science compared with their peers worldwide, 8th graders fell down while those in other countries sprinted ahead. And results from the 2000 National Assessment of Educational Progress in science brought the bad news that not quite one-third of our nation's 4th and 8th graders could be called "proficient" in grade-level work. Meanwhile, fewer than one in five high school seniors—students at the end of their K-12 careers—could muster a proficient performance on NAEP in science.

Today's science teachers, the agents of change in the classroom, are similarly at a disadvantage. Nearly one- fifth of high school science teachers lack even a minor in their main teaching field. More than half—56 percent—of high school students taking physical science do so from a teacher teaching out of field. In fact, the No Child Left Behind Act addresses this problem. It calls for every public school teacher, by 2005-06, to be "highly qualified," by which it means teachers who are certified or licensed, hold a bachelor's degree, and demonstrate a high level of competence in the subjects they teach. (Of course, this reform raises the question of where to find and how to retain the notoriously elusive "qualified" science teacher.)

Despite the national alarm bells on science, the way the No Child Left Behind law is written may already be tempting states and districts to put science, especially in the early grades, on the back burner. Admittedly, logic dictates a kind of academic triage: focus on the subject-area work that is the most urgent, namely reading and math. Science can wait, the thinking might go, thanks to the later deadline under the law.

Our organization works with teachers, school districts, and others nationwide, providing professional development, research and evaluation, and instructional materials in the teaching of science. Regrettably, we know of several examples of school districts where, given the new push at the state and federal levels for quick progress on elementary- level reading and math test scores, science at the primary grades is being allowed to wither—or has been killed outright. There just isn't enough time in the school day to do it all, administrators believe.

To understand science is to understand how the world works, and that is just as essential to full participation in society as being able to read or compute.

We urge state and district leaders to avoid the "no time for science" mentality. Obviously, reading/language arts and mathematics are bedrocks of what our children should know and be able to do, but they're not the only ones. To understand science is to understand how the world works, and that is just as essential to full participation in society as being able to read or compute. A science lesson can be a good opportunity for students to practice and deepen skills gained in language arts and math. Keeping lab notes affords the chance to practice expository writing, and charting the growth of a plant, for instance, puts to work what may be newly learned skills in measurement.

Educators and policymakers should take the delay on science as a gift—the gift of time. This means the science education community has time to enhance instruction, curricula, and professional development. It means that the assessment community has time to continue to get its arms around the best ways to test students' grasp of inquiry science. Using this opening to advance those fields could mean that when 2007 comes, we're ready. Or, at least, readier than we are now.

There is no time to waste. The children who will be taking the required science assessments in the 2007-08 year are already in our school systems. The science assessments mandated under the No Child Left Behind Act must be administered at least once in each of the grade spans 3-5, 6-9, and 10- 12. The students who will be high school seniors in five years are in 7th grade now, the 8th graders of 2007 are this year's 3th graders, and the 5th grade students that year are today's kindergartners. The more these students experience science, the better prepared they'll be for any and all upcoming assessments.

The more knowledgeable today's teachers are, the more flexible they, too, can be about the mandates of tomorrow. Despite the changes the No Child Left Behind Act has made to professional-development programs, there is still a lot of federal money for enhancing the skills of science and math teachers.

It is true that the Eisenhower Professional Development Program, which for 20 years guaranteed a large pot of money primarily for the advancement of math and science teachers, is no more, having been combined with other funds to form a single program for recruitment, hiring, and professional development of educators. However, the total amount of federal money available for professional development for all teachers is larger than in the past—nearly $3 billion in fiscal 2003—and it is designed to help teachers meet the "highly qualified" benchmark by 2005. Given what is sure to be fierce competition for that money, advocates will simply need to push for science teachers to get their share.

Meanwhile, the No Child Left Behind Act puts the pressure on when it comes to educational research on what works in science education, just as it does for research pertaining to other education sectors. The legislation emphasizes repeatedly that federal Title I funds are to support only those educational practices grounded in "scientifically based research," a term it defines as research "that involves the application of rigorous, systematic, and objective procedures to obtain reliable and valid knowledge."

Despite national alarm bells on science, the way the No Child Left Behind Act is written may already be tempting states and districts to put science on the back burner.

This amounts to nothing short of a revolution in the way educational research and evaluation is conducted. The best standards-based curricula in science, for instance, are based more often on research about how children learn than on evaluations that provide evidence of the effectiveness of individual curricula or programs. But rigorous research, especially those experimental designs involving large numbers of randomly assigned subjects, is difficult and expensive to do. It will take significant financial support from both the public and private sectors to amass the body of research being sought.

If, in the next four or five years, educational research into effective precollegiate science programs can get up a full head of steam, science may be able to avoid the kinds of internal debates that have torn asunder the reading and mathematics communities. We can sidestep fights about which science programs help kids learn the most if we know which science programs help kids learn the most. Even if the results of new educational research are imperfect, complex, or confusing, they will at least represent more information than we have now.

By focusing on the opportunity, rather than the onus, presented by the No Child Left Behind Act, educators, state and district leaders, and others can ensure that, at minimum, no ground in science is lost for our students and teachers. And, at best, we can hope to position science to be the content area in which curriculum, instruction, assessment, professional development, and educational research serve as national exemplars.

Judith Opert Sandler is the director of the Center for Science Education at Education Development Center Inc., in Newton, Mass., and is a vice president of EDC.

Vol. 22, Issue 29, Pages 40, 42

Published in Print: April 2, 2003, as Lest Science Be Left Behind
Notice: We recently upgraded our comments. (Learn more here.) If you are logged in as a subscriber or registered user and already have a Display Name on, you can post comments. If you do not already have a Display Name, please create one here.
Ground Rules for Posting
We encourage lively debate, but please be respectful of others. Profanity and personal attacks are prohibited. By commenting, you are agreeing to abide by our user agreement.
All comments are public.

Back to Top Back to Top

Most Popular Stories





Sponsor Insights

Stop cobbling together your EdTech

Integrate Science and ELA with Informational Text

To Address Chronic Absenteeism, Dig into the Data

Can self-efficacy impact growth for ELLs?

Disruptive Tech Integration for Meaningful Learning

5 Game-Changers in Today’s Digital Learning Platforms

Keep Your Schools Safe and Responsive to Real Challenges

Hiding in Plain Sight - 7 Common Signs of Dyslexia in the Classroom

The research: Reading Benchmark Assessments

Shifting Mindsets: A Guide for Training Paraeducators to Think Differently About Challenging Behavior

All Students Are Language Learners: The Imagine Learning Language Advantage™

Shifting Mindsets: A Guide for Training Paraeducators to Think Differently About Challenging Behavior

How to Support All Students with Equitable Pathways

2019 K-12 Digital Content Report

3-D Learning & Assessment for K–5 Science

Climate Change, LGBTQ Issues, Politics & Race: Instructional Materials for Teaching Complex Topics

Closing the Science Achievement Gap

Evidence-based Coaching: Key Driver(s) of Scalable Improvement District-Wide

Advancing Literacy with Large Print

Research Sheds New Light on the Reading Brain

3 Unique Learner Profiles for Emerging Bilinguals

Effective Questioning Practices to Spur Thinking

Empower Reading Teachers with Proven Literacy PD

Dyslexia: How to Identify Warning Signs at Every Grade

Increased Social Connectedness Through Digital Peer Learning

Student Engagement Lessons from 3 Successful Districts

Response to Intervention Centered on Student Learning

The Nonnegotiable Attributes of Effective Feedback

SEE MORE Insights >