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ABSTRACT 
 
In this study we report on a test of a method that uses ontologies to individualize instruction by directly linking 
assessment results to the delivery of relevant content. Our sample was 2nd Lieutenants undergoing entry-level 
training on rifle marksmanship.  
 
Ontologies are explicit expressions of the concepts in a domain, the links among the concepts, and the governing 
constraints of these links. We have developed an ontology for the domain of rifle marksmanship. The ontology 
contains over 160 concepts and over 160 relationships that capture the different types of relations among the 
concepts (e.g., causal, part-whole, classifying, functional). The content was drawn from Marine field manuals, and 
interviews with snipers and coaches. Concepts were tagged with instructional content (e.g., definitions, explanations, 
elaborations, multimedia examples). Relations were tagged with an explanation of why the particular relation holds 
under particular conditions.  
 
Assessment is tied to instruction via influence (Bayesian) networks. Performance on assessment items determines 
what content is pulled from the ontology for delivery. For example, if a Marine scores poorly on all assessment 
items related to breathing control, then instructional content tied to the ontology concept “breathing control” (and 
any linked concepts) could be delivered. Conversely, if a Marine scores low on items that suggest poor knowledge 
of the shot group associated with poor breathing control, then only a shot group related to breathing might be 
delivered.  
 
Our test of this approach appears feasible and promising. The Bayesian network appeared to be successful in 
identifying knowledge gaps, and relevant and targeted content was served to Marines. Learning appeared to be 
occurring at a faster rate over time for Marines who received targeted instruction compared to Marines in a control 
group. Implications are discussed. 
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CONTEXT OF STUDY 
 
The focus of this research was on evaluating an 
automated approach to link assessment information 
(culled from tests of knowledge) to individualized 
instructional recommendations. That is, given that 
assessments results suggest a gap in someone’s 
knowledge, can an automated method be developed to 
provide remediation that targets the individual’s 
specific knowledge gaps? 
 
This work is embedded in a larger research program to 
develop assessment models and tools for Naval 
distributed learning. CRESST is under contract to the 
Office of Naval Research (ONR) and the first 
application of our work is for U.S. Marine Corps 
(USMC) marksmanship training. Our USMC work is 
focused on developing online assessments of Marines’ 
knowledge of rifle marksmanship.  
 
Our approach was to use Bayesian networks and 
assessments of knowledge to first infer an individual’s 
knowledge gap, and then deliver remediation content 
(pulled from an ontology) that was targeted to address 
only that knowledge gap.  
 
Definition of an Ontology 
 
An ontology provides a shared and common 
understanding of a domain that can be communicated 
among people and computational systems (Fensel, 
Hendler, Lieberman, & Wahlster, 2003). The ontology 
captures one or more experts’ conceptual 
representation of a domain expressed in terms of 
concepts and the relationships among the concepts. An 
ontology is a commitment to a point of view of how a 
domain is structured, but there can be multiple 
representations (Chandrasekaran, Josephson, & 
Benjamins, 1999; de Clercq, Hasmon, Blom, & 
Korsten, 2001; McGuinness, 2003). Ontologies are 
important because they provide a common, explicit 
framework for sharing and using knowledge. More 
concretely, an ontology standardizes the terms and 

structure of the domain. The standardization makes 
possible sharing of the ontology; thus, the knowledge 
contained therein is used across multiple computer 
platforms for different applications (Gruber, 1995). 
Ontologies were first developed as part of the AI 
research effort to facilitate knowledge sharing and 
reuse. The use of ontologies has extended recently to 
fields such as information retrieval, knowledge 
management, medical guidelines, military, and e-
commerce. CRESST is now applying ontologies to 
assessment.  
 
 

ONTOLOGIES TO SUPPORT ASSESSMENT 
AND INSTRUCTION 

 
For assessment and instructional purposes, the 
capability to express the concepts in a domain, the 
links among the concepts, and the governing 
constraints offers clear advantages over relational or 
highly structured data models. Usually, the 
representation of a domain is best represented as a 
network (vs. a strictly hierarchical representation, for 
example), especially in knowledge-rich applications. 
 
The existence of computational tools to create, edit, 
maintain, and exchange ontologies makes feasible the 
use of ontologies in assessment and instruction. 
Protégé is one such computational tool, originally 
developed in 1987 at Stanford University and now in 
its third generation (Gennari et al., 2002). Protégé has 
an easy-to-use graphical user interface, Java 
implementation, and an active developer community. 
Similar products are available from both academic and 
commercial vendors. 
 
In the following sections, we describe an ontology we 
developed on rifle marksmanship for the USMC. 
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Ontology of U.S. Marine Corps Rifle 
Marksmanship Knowledge 
 
The overall purpose for developing an ontology was to 
capture the knowledge and structure of the domain in a 
way that would allow exploration of the use of 
ontologies for assessment and instructional purposes. 
We judged the domain of rifle marksmanship to be an 
ideal candidate to represent in an ontology because the 
domain is bounded, and domain experts agreed on the 
set of important topics.  
 
Domain Structure 
 
Our knowledge engineering strategy was to capture 
knowledge in two representations: (a) as outlined by 
doctrine (e.g., USMC field manuals), information 
which could be organized as a hierarchically structured 
body of knowledge; and (b) as perceived by experts 
(e.g., coaches, snipers, rifle team members), 
information which could be organized conceptually 
(i.e., as a network) to reflect how domain experts 
perceived the knowledge to be interrelated.  
 
Currently, our rifle marksmanship ontology contains 
168 different concepts that cover seven fundamentals 
of rifle marksmanship and 160 relationships among the 
concepts using 16 relationship types. Figure 1 shows a 
portion of the hierarchy of the ontology. The structure 
of the content is captured by the Knowledge class. The 
hierarchical structure shows the taxonomy of class and 
subclass relationships among the topics.  
 

 
 

Figure 1. Example of the rifle marksmanship content 
organized hierarchically 

 

Figure 2 shows how the content is organized as 
perceived by our domain experts. In this case, the 
organization is a network and represented by the 
Relationship class. The Relationship class is made up 
of subclasses that represent high-level relation types 
(e.g., causal, part/whole). Subclasses of each relation 
type represent increasingly specific relations (e.g., 
PartOf is a particular kind of relation within the 
PartWhole class). Figure 2 shows specific instances of 
the PartOf relation that directly connect different topics 
shown in Figure 1. Our assumption is that the 
hierarchical representation reflects the organizational 
structure of the content similar to a table of contents, 
and the relational structure captures the detailed 
relations that presumably underlie deep understanding 
of the content.  
 

 
 

Figure 2. Example of relationship classes. The relationship 
class specifies how the content is related conceptually 

 
Binding Content to the Ontology Structure 
 
Many ontologies typically capture only the structure of 
the domain (e.g., Figure 1). However, to be useful 
instructionally, content would ideally be bound to the 
structure. For example, Figure 3 shows an example of 
how content is related directly to objects in the 
ontology. For each topic, we have defined different 
knowledge types—conceptual (or declarative) 
knowledge and procedural knowledge. Further, we 
have partitioned the information into subtypes: 
definition, explanation (i.e., why the topic is 
important), and elaboration (i.e., supplemental 
information). Although not shown in Figure 3, we have 
also allowed for the inclusion of different media types 
(e.g., video, picture, URL). For example, for the topic 
BreathControl we have a video demonstrating the 
effects of breathing on the position of the rifle muzzle 
and bullet strike (breathing causes the rifle to move 
vertically; firing while breathing results in a vertical 
dispersion of shots).  
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Source material was drawn from the U.S. Marine 
Corps rifle marksmanship manual (USMC, 2001). 
Marksmanship training is derived from this manual. 
For concepts, the instructional content is delineated in 
terms of definition, explanation, elaboration, and 
multimedia examples (e.g., a picture of the trigger) 
where appropriate. For relations, the instructional 
content was an explanation of why the particular 
relation holds under the particular conditions. 
 

 
 

Figure 3. Example of the rifle marksmanship content bound 
to the topic TriggerControl 

 
 

RECOMMENDING INDIVIDUALIZED 
INSTRUCTIONAL CONTENT 

 
Because of how we have structured the ontology (i.e., 
hierarchical and network/conceptual representations) 
and because we have bound content at different grain 
sizes to specific topics in the ontology, we now have 
the means to deliver content at different grain sizes 
depending on the application. In this section we 
describe our technique for identifying knowledge gaps 
and delivering individualized content. 
 
Identifying Knowledge Gaps Using Bayesian 
Networks 
 
The first step in recommending individualized content 
is to identify an individual’s knowledge gaps. Once the 
gaps are identified, relevant content needs to be 
retrieved and delivered to the individual. 
 
Identifying what students know and do not know is 
accomplished by diagnostic assessments. For example, 
our strategy for assessing Marines’ understanding of 
rifle marksmanship is to use a range of measures that 
reflect different cognitive demands. For example, we 
broadly sample their knowledge of marksmanship 
using selected-response multiple-choice tests. 
 

This assessment information is then fused together 
using a Bayesian network to yield probabilities on the 
degree to which a Marine understands different topics 
of rifle marksmanship. A Bayesian inference network, 
also known as an influence or probabilistic causal 
network, depicts the causal structure of a phenomenon 
in terms of nodes and relations (Jensen, 2001). Nodes 
represent states, and links represent the influence 
relations among the nodes. Node states can be 
observable or unobservable.  
 
The utility of a Bayesian inference network is that it 
yields the probability that an unobservable variable is 
in a particular state (e.g., understands trigger control) 
given observable evidence (e.g., whether the 
participant knows the definition of trigger control). The 
probability of the unobservable variable being in a 
particular state is the inference made about student 
understanding. 
 
Recommending Instructional Content 
 
Linking the Bayesian network and the ontology is 
conceptually equivalent to the link between assessment 
and instruction. That is, the (unobservable) nodes in the 
Bayesian network was conceptualized to represent a 
concept in the domain of rifle marksmanship. The 
probability values for the nodes (or concepts) was 
taken to reflect the probability that the Marine 
understood that concept. For each concept for which 
we had content, if the probability fell below the 
threshold (set to .65 after inspecting the probability 
distribution), then the software pulled content from the 
ontology and made it available to the Marine. There 
was a one-to-one mapping between the concepts in the 
Bayesian network and concepts in the ontology.  
 

RESEARCH QUESTIONS 
 
Our research questions focused on examining the 
feasibility of individualizing content delivery based on 
a model of knowledge dependencies: 
• To what extent does our Bayesian network detect 

knowledge gaps in individual participants with 
respect to the domain of rifle marksmanship? 

• How effective is individualized content delivery on 
learning when a Bayesian network is used to detect 
knowledge gaps and an ontology is used to provide 
relevant and detailed content? 
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METHOD 
 
Participants 
 
Fifty-three 2nd Lt. Marines undergoing entry-level rifle 
marksmanship training were recruited for this study. Of 
the 53 Marines, 16 participants were randomly 
assigned to the experimental condition (individualized-
content delivery study), and the remaining 37 assigned 
to a control condition. 
 
Design 
 
We used a two-group pretest, treatment, posttest 
design. The treatment condition received feedback of 
our estimates of their knowledge on different topics of 
rifle marksmanship, based on the Bayesian network 
probabilities. Participants were then given online 
access to relevant content on those topics. The control 
group did not receive the feedback or access to the 
content. Pretest and posttest measures are described in 
the measures section. 
 
Tasks 
 
The primary task for participants in the treatment 
condition was to first complete the assessment 
measures (described next) and then receive a “report 
card” on rifle marksmanship topics the system 
“scored.”  
 
Given the score, Marines were instructed to learn as 
much as they could about the topics on which they 
received a low score. In this way, we approximated the 
assessment-instruction cycle. The entire system was 
administered in an online format. Marines were given 
access to information about topics on which they 
scored low. The content for these topics was drawn 
directly from the marksmanship ontology, and included 
text explanations, digital photographs, or digital videos.  
 
An example screenshot is shown in Figure 4. For each 
Marine, information was made available on topics for 
which a Marine scored 6 or lower. Also, different kinds 
of information was made available depending on the 
Marine’s performance on the various assessment items. 
For example, if a Marine got a definition of a topic 
correct but performed poorly on more complex 
assessment items covering the same topic, the 
definition of the topic was not delivered. The intent 
was to deliver only the information needed, no more 
and no less. 
 

 
 

Figure 4. Fragment of the screen shown for a 
particular Marine who scored low on the topic of Stock 

Weld Placement. 
 
Measures 
 
Qualification Score 
The qualification score was the Marines’ score of 
record. The qualification score is the primary 
performance measure.  
 
Background Information 
The following information was collected from 
participants: age, ethnicity, sex, rank, ASVAB general 
technical score, occupational specialty, and type of 
unit. 
 
Knowledge Mapping 
Knowledge maps were used to measure participants’ 
conceptual knowledge (Herl, Baker, & Niemi, 1996). 
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The task required participants to graphically depict 
their understanding of rifle marksmanship in terms of a 
network. The nodes in the network represented 
concepts, and labeled links represented the 
relationships among concepts. Twenty-five concepts 
and 10 links were provided to participants and the 
knowledge map task was administered online.  
 
Prior Knowledge 
The prior knowledge measure was designed to survey 
participants’ knowledge of rifle marksmanship. 
Participants were given a 41-item multiple-choice test 
that sampled the following topics: sight picture, sight 
adjustment, sight alignment, weapons safety, breathing, 
trigger control, stock weld, eye relief, bone support, 
firing hand placement, follow-through, forward hand 
placement, grip of firing hand, and muscular 
relaxation.  
 
Shot Group Depiction 
The shot group depiction task was designed to measure 
participants’ knowledge of the shot groups associated 
with common shooter problems. Participants were 
instructed to draw a 5-shot group for problems with 
breathing, sight adjustment, flinching, bucking, and 
focusing on the target. 
 
Evaluation of Shooter Positions 
This task was intended to measure participants’ skill at 
identifying proper and improper firing positions of a 
shooter posing in proper and improper positions. The 
shooter was shown in QuickTime VR, and participants 
could rotate the image to view the shooter from 
different angles. Participants were asked to judge how 
proper or improper the shooter’s position was on the 
following elements: placement of firing hand, 
placement of forward hand, forward elbow placement, 
stock weld placement, rifle butt placement, leg 
placement, feet placement, and body placement. 
 
Scientific Reasoning 
Lawson’s Classroom Test of Scientific Reasoning 
(CTSR) (revised 24-item multiple choice edition) was 
used to measure scientific reasoning (Lawson, 1987). 
All items were multiple choice. The purpose for 
including the CTSR was to gather information on 
participants’ reasoning; this measure was used as a 
proxy for aptitude.  
 
Level-of-Knowledge Survey (Experimental 
Condition Only) 
Participants in the experimental condition were 
instructed to rate their knowledge on a scale of 0-10 on 
various rifle marksmanship concepts. The list of 
concepts comprised the Bayesian network and included 

top-level concepts (e.g., aiming) and low-level (e.g., 
grip of firing hand) concepts.  
 
Procedure 
Data collection occurred over a 2-week period. Prior to 
any training on marksmanship or the treatment, all 
participants were administered a pretest knowledge 
map and the CTSR measure. Participants in the control 
condition were also administered the prior knowledge 
measure. Participants then attended classroom lectures 
for 1.5 days on rifle marksmanship. Following the 
classroom lectures, participants in all conditions were 
administered a second mapping task where they were 
instructed to improve their maps. In addition, the 
experimental condition received the prior knowledge 
measure—the purpose of administering this measure 
after instruction was to have a range of performance 
with which to update the Bayesian network. 
 
A third mapping task was administered a day later after 
participants received firing practice and coaching; 
however, participants in the experimental condition 
first received the intervention (i.e., feedback on their 
level of knowledge and individualized content 
delivery). Participants receiving the feedback were 
instructed to learn as much as they could on the topics 
they scored low on. Following the intervention, the 
experimental condition then received a posttest prior 
knowledge task and a posttest knowledge mapping 
task.  
 
Two additional knowledge mapping tasks were 
administered throughout practice firing, and a final 
knowledge mapping task was administered at the end 
of the training sequence (i.e., after the participants fire 
for “record score”). The final mapping task required 
participants to start with a blank map and participants 
in the control condition were administered posttest 
prior knowledge surveys. 
 
 

RESULTS 
 
Two sets of analyses are presented, organized by 
research questions. The first set of analyses examines 
the fidelity of the Bayesian network model with respect 
to detecting knowledge gaps in individuals. The second 
set of analyses examines the instructional effect of 
individualized content delivery. 
 
To what extent does the Bayesian network model of 
the dependencies, among rifle marksmanship 
knowledge, detect knowledge gaps in individual 
participants? 
Individual items from our prior knowledge, shot-group, 
and QuickTime VR assessments were used as input 
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Table 1. Agreement between participants’ and 
Bayesian network level-of-knowledge scores (high or 

low) (n = 16) 

(i.e., evidence) to the Bayesian network. Given the 
evidence, the network was updated and probabilities 
were obtained for each “hypothesis” node. The 
hypothesis node represents the inference that a 
participant knows a concept given his/her performance 
on the assessments.  

 

 
The probabilities from the hypothesis variables were 
used as scores and were rescaled from 0 to 1.0 to 0 to 
10, to correspond to the scale of the level-of-
knowledge survey administered to participants. 
 
Because of the small number of participants who 
received the level-of-knowledge survey (i.e., n = 16), 
we dichotomized level-of-knowledge scores into two 
categories: low and high knowledge. Thus, scores from 
0 to 5 were considered low, and scores from 6 to 10 
were considered high. This transformation was done on 
participants’ self-reports of their level of knowledge 
and on the scores derived from the Bayesian network.  
 
The first set of analyses examined the correspondence 
between the level-of-knowledge scores derived from 
participants’ self-reports and the scores derived from 
the Bayesian network. As shown in Table 1, in general 
most participants rated their knowledge of the different 
concepts as high on nearly all of the concepts. The 
Bayesian network scores consistently agreed with 
participants’ perception. The overall agreement 
percentage across all concepts is 79%. While these 
results appear favorable with respect to the Bayesian 
network model of knowledge dependencies, caution 
should be used when interpreting these results: there 
was a skewed distribution across low and high 
categories (i.e., it is unclear what the agreement would 
be if there were more participants who rated their 
knowledge as low). A second caution is that the 
validity of these results depends on the accuracy of 
participants’ perceptions of their level of knowledge. 

aThese concepts were part of the Bayesian network but 
content was not available for these concepts and thus 
they were not part of the content delivery. 

No. of matches Concept in Bayesian 
network Low High 

No. of mis-
matches 

Aiming processa 1 13 2 
Breath control 0 9 7 
Trigger control 0 13 3 
Bone support 1 10 5 
Elbow placement 2 10 4 
Eye on front sight posta 1 12 3 
Eye relief 1 12 3 
Feet placementa 1 13 2 
Firing hand placementa 1 13 2 
Finger placementa 1 14 1 
Follow-through 2 12 2 
Forward hand 
placement 1 11 4 
Grip of firing hand 1 11 4 
Leg placementa 1 13 2 
Muscular relaxationa 1 13 2 
Natural point of aima 1 12 3 
Rifle butt placement 0 12 4 
Natural respiratory 
pause 0 15 1 
Sight adjustmenta 6 0 10 
Sight alignment 1 12 3 
Sight picture 0 13 3 
Stockweld placement 2 9 5 
Trigger control 
procedurea 0 13 3 
Trigger squeeze 0 13 3 
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Table 2. Non-parametric correlations (Spearman) between probabilities for high-level concepts in the Bayesian net 
and knowledge and performance measures (N = 53) 

 

Concept in Bayesian 
network CTSR 

Knowledge 
map 

Prior knowledge of 
rifle marksmanship

Shot 
group 

Evaluation of 
shooter 

positions 
Qualification 

score 
Fundamentals of rifle 
marksmanship .28* .08 .73** .27* .32* .22§

Aiming .35** .06 .68** .24§ .38** .20 
Breath control .24 .08 .66** .48** .17 .16 
Trigger control .36** .20 .50** .30* .30* .40** 
Position .17 .14 .59** .17 .36** .32* 
§p < .10 (two-tailed). 
*p < .05 (two-tailed). 
**p < .01 (two-tailed). 
 
The next set of analyses examined the associations 
between major concepts in the Bayesian network and 
external measures (Table 2). Presumably, if the 
dependencies have been modeled accurately, then the 
scores should be correlated. For this analysis, the full 
sample of participants was available, and probabilities 
were used as scores. The non-parametric procedure 
(Spearman) was used due to the skewed distribution of 
the probabilities. 
 
The results shown in Table 2 are interesting. The 
correlations between the prior knowledge measures and 
the probabilities in the Bayesian network are to be 
expected—the network is updated with information 
from the prior knowledge, shot group, and shooter 
evaluation measures. The relationship with the CTSR 
(an ability proxy) is also promising. We interpret this 
as the Bayesian network being moderately sensitive to 
the cognitive demands of learning the domain. 
However, the null correlations between the Bayesian 
network and the knowledge map score are unclear. 
That is, knowledge maps have been used as measures 
of conceptual understanding. The Bayesian network is 
intended to reflect the knowledge dependencies among 
the different concepts—presumably a conceptual 
structure; thus, it is unclear why there is essentially no 
relationship between the measures. 
 
The significant relationships between concepts in the 
Bayesian network and qualification score is interesting 
because it suggests a link between knowledge, as 
measured by our assessments and modeled in the 
Bayesian network, and the outcome performance of 
interest. 
 

How effective is individualized content delivery on 
learning when a Bayesian network is used to detect 
knowledge gaps and an ontology is used to provide 
relevant and detailed content? 
 
In this section we attempt to answer this question by 
first examining the sensitivity of our Bayesian network 
to instructional effects. Our assumption is that if 
participants learn something from the content, they will 
perform well on parts of the assessments that call for 
the knowledge learned. Conversely, if participants did 
not learn a particular content, we would not expect to 
see any changes in performance on the assessment. 
Because the Bayesian network is updated directly with 
assessment information, we expect to observe the same 
properties. 
 
Analysis of Individual-Level Effects: Comparing 
Bayesian Network Probabilities to Detect the Local 
Effects of Individualized Content Delivery 
 
To determine how effective the targeted content 
delivery was, an analysis of the change in the Bayesian 
network probabilities was done, with respect to the pre-
instruction and post-instruction administration of 
particular content nodes. The change in probabilities 
between the pretest and posttest was computed for each 
content node across all 16 participants. This procedure 
yielded a matrix of 224 cells, where rows represented 
participants (n = 16 participants) and columns 
represented concepts (14 concepts). Fifty-two cells 
were dropped because of a technical problem in the 
software used to compute the probabilities.  
 
Based on the Bayesian network probabilities computed 
from the pretest assessments, we identified all the 
participant × concept combinations for which content 
was served (33 cells in the matrix). We also identified 



 
 
 

Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2003 

concepts for which content was not served (139 cells in 
the matrix).  
 
We reasoned that if our Bayesian network accurately 
identified knowledge gaps, and if we were successful 
in binding relevant content from the ontology to the 
Bayesian network concepts, then the content served to 
participants would be relevant and targeted. To the 
extent that the participant engaged the content, we 
assumed they would learn the content. Participants’ 
learning would be reflected in their posttask 
performance on our assessments. Because the 
assessment performance information is used to update 
the Bayesian network, we could update the Bayesian 
network with the posttask assessment information and 
obtain a second set of probabilities that reflected 
participants’ increases in learning. For concepts that 
were not served up, we did not expect any learning to 
occur.  
 
To test this assumption, we conducted a paired t test 
between the posttask probabilities and pretask 
probabilities. There was a significant difference 
between the posttask and pretask probabilities when 
content was served, t(32) = 7.36, mean gain = .34, SE= 
.05. In contrast, there were no significant differences 
when content was not served, mean gain = .003, SE = 
.009, n = 138.  
 
Further, it appears that participants were engaged in the 
task. The more concepts that were served to 
participants, (a) the more effort they reported putting 
into learning the information (rsp = .73, p < .01, n = 
15); (b) the more often participants reported attempting 
to learn the information (rsp = .89, p < .001, n = 15); 
and (c) the more participants reported video as being 
useful (rsp = .53, p < .05, n = 15). Interestingly, this 
relationship was not found for pictures or text. 
 
Analysis of Group-Level Effects: Comparing 
Knowledge Map Scores Over Time to Evaluate the 
Conceptual Effects of Individualized Content 
Delivery 
 
Detecting significant differences in the changes in 
probabilities from pre- to posttask supports the idea 
that our Bayesian network representation is capturing 
aspects of knowledge dependencies. Targeted delivery 
of content, based on estimates of an individual’s 
knowledge gaps, appears to result in increases in 
knowledge related to the delivered content. However, 
there remains the question of degree of knowledge: To 
what extent does individualized content delivery affect 
increases in conceptual knowledge? 
 

To answer this question, we examined participants’ 
knowledge map scores over six occasions, across the 
experimental and control conditions. The first five 
mapping occasions were cumulative: Participants 
started with a blank map on the first occasion and 
modified their maps on subsequent occasions. The 
sixth and final mapping occasion was done with a 
blank map. For the purposes of this analysis, the first 5 
mapping occasions are treated as repeated measures, 
and the final mapping occasion is treated as an 
independent measure. 
 
Knowledge mapping performance was analyzed with a 
2(condition) × 5(mapping occasion) ANOVA, mapping 
occasion (occasion 1 to 5) as the within-subjects factor 
and condition (individualized content delivery, control) 
as the between subjects factor. A significant main 
effect was found for mapping occasion, F(2.1, 580.7) = 
18.1, p < .001. Because the interaction term did not 
meet the sphericity assumption, the Huynh-Feldt 
correction was applied. This result shows differences in 
map scores across occasions. Participants’ map scores 
increased across occasions. Pairwise comparisons show 
a significant increase in map scores between the first 
and all subsequent occasions (see Table 3). In addition, 
a significant difference was found between map scores 
of the second and fourth occasions. 

 
Table 3. Knowledge Map Scores by Occasion 

Note. Experimental, n = 12; Control, n = 23. 

 Knowledge Mapping Occasion 
Condition 1 2 3 4 5 
Experimental      

M 18.42 24.50 26.67 27.33 26.42 
SD 10.03 11.77 11.93 11.77 12.46 

Control      
M 12.26 16.43 18.26 18.65 17.91 
SD 10.14 13.09 14.26 13.81 13.49 

 
A main effect for condition was also found, favoring 
the individualized content delivery condition, F(1, 33) 
= 3.46, p = .07. Because of the exploratory nature of 
this study, we included the condition term in 
subsequent simple effects analyses. No interaction 
effects were found. Follow-up pairwise comparisons 
showed a significant difference between the 
experimental condition and the control condition at 
fourth and fifth occasions. The experimental condition 
at mapping occasion 4 had significantly higher scores 
than the control condition, t(45) = 2.4, p < .05. 
Similarly, there was a trend favoring the experimental 
condition at occasion 5, t(44) = 1.82, p < .08. 
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An independent t test was performed on the posttest 
knowledge map. This mapping activity was separate 
and distinct from the repeated mapping activity. 
Participants created a knowledge map from scratch. 
There was a difference that approached significance, 
t(49) = 1.95, p < .06. The experimental condition (M = 
26.0, SD = 14.0) outperformed the control condition (M 
= 18.6, SD = 11.8). We interpret this result as a 
possible effect due to the targeted remediation.  
 
Finally, when the posttest prior knowledge measures 
were compared, no significant differences were found. 
 
 

DISCUSSION 
 
In this study we tested an approach to explicitly link 
assessment and instruction via the use of (a) an 
ontology to provide the structure and content for the 
domain of rifle marksmanship, and (b) a Bayesian 
network model of the knowledge dependencies 
underlying the understanding of the domain. 
Assessments of knowledge of rifle marksmanship were 
administered, and participants’ performance on the 
assessments were used to update the Bayesian network. 
The Bayesian network was used to estimate 
participants’ understanding of the domain given the 
assessment results. Individualized content delivery was 
implemented by first identifying knowledge gaps (as 
measured by [low] probabilities in the Bayesian 
network), and then related content from the ontology 
was pulled and delivered to the participant. Each 
participant was provided access to an individualized set 
of content.  
 
Our results are to be taken as exploratory and limited 
by the small sample size; however, our findings are 
extremely provocative given these limitations. First, 
our Bayesian network model appears to agree at an 
aggregate level with participants’ perception of their 
level of knowledge. The overall agreement is about 
80%. This finding suggests that our Bayesian model—
the set of concepts and how the concepts influence 
each other—is doing a reasonable job of capturing the 
knowledge dependencies. While the model is imperfect 
and the results very tentative, the general approach 
appears promising.  
 
Achieving agreement with participants’ perception of 
level of knowledge is a first step in establishing the 
validity of the approach. However, this evidence alone 
is insufficient for a variety of reasons (e.g., participants 
may not be a good judge of what they don’t know). 
Additional evidence that would support the general 
approach is seen in the impact of the individualized 
delivery of content on participants’ learning. When 

individualized content is provided to participants, they 
appear to engage the material and learn from it, as 
evidenced by (a) increases in the probability estimates 
of their knowledge only on the very specific and 
relevant concepts in the Bayesian network and no 
increases in the probabilities for non-related nodes; and 
(b) higher performance than participants in a control 
condition on an independent measure that purports to 
measure knowledge at a conceptual level (i.e., a 
coherent network of ideas).  
 
It is this latter finding that is the most interesting and 
compelling. First, there existed no differences on the 
knowledge map scores prior to the treatment. However, 
after the provision of individualized content, 
participants in the experimental appeared to accelerate. 
Further, the finding of no difference on the posttest 
prior knowledge test is remarkable for the following 
reason: the evidence used to update the Bayesian 
network is in large part taken from performance on the 
prior knowledge measure (a selected-response measure 
that samples surface knowledge of rifle 
marksmanship), yet the learning impact is reflected in 
participants’ conceptual understanding and not at the 
surface level. 
 
While it appears we have been moderately successful 
in identifying knowledge gaps, more direct evidence is 
needed (e.g., as provided by think-aloud protocols or 
other in-depth measurement). Such efforts will guide 
us on the refinement of the approach. Future work 
should also examine in more depth the relationship 
between learning due to the targeted instructional 
remediation and differences in the outcome (i.e., 
shooting) performance. 
 
Linking assessment and instruction is the sin qua non 
of education and training. To date, attaining this 
linkage has been difficult, elusive, and unscalable. The 
approach we have explored in this paper is grounded in 
cognition and instruction, and demonstrates an 
integration of online assessments of complex learning, 
domain modeling that begins with cognitive demands, 
and data fusion methods that enable principled ways to 
synthesize and use assessment information. 
 
 

ACKNOWLEDGEMENTS 
 
The work reported herein was supported under the 
Educational Research and Development Centers 
Program: PR/Award Number R305B960002, as 
administered by the Office of Educational Research 
and Improvement, U.S. Department of Education, and 
the Office of Naval Research Award Number N00014-
02-1-0179, as administered by the Office of Naval 



 
 
 

Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2003 

Research. The findings and opinions expressed in this 
report do not reflect the positions or policies of the 
National Institute on Student Achievement, 
Curriculum, and Assessment, the Office of Educational 
Research and Improvement, the U.S. Department of 
Education, or the Office of Naval Research. 
 
 

REFERENCES 
 
Chandrasekaran, R., Josephson, J. R., & Benjamins, V. 

R. (1999). What are ontologies, and why do we 
need them? IEEE Intelligent Systems, 14, 20–26. 

 
de Clercq, P. A., Hasmon, A., Blom, J. A., & Korsten, 

H. H. M. (2001). The application of ontologies and 
problem-solving methods for the development of 
shareable guidelines. Artificial Intelligence in 
Medicine, 22, 1–22. 

 
 Fensel, D., Hendler, J., Lieberman, H., & Wahlster, 

W. (Eds.). (2003). The semantic web: Why, what, 
and how. Cambridge, MA: MIT Press. 

 
Gennari, J., Musen, M. A., Fergerson, R. W., Grosso, 

W. E., Crubézy, M., Eriksson, H., Noy, N. F., & 
Tu., S. W. (2002). The evolution of Protégé: An 
environment for knowledge-based systems 
development (Stanford Medical Institute Tech. 
Rep. No. 2002-0943). Stanford University: Palo 
Alto, CA. 

Gruber, T. R. (1995). Toward principles for the design 
of ontologies used for knowledge sharing. 
International Journal of Human-Computer 
Studies, 43, 907–928.Herl, H. E., Baker, E. L., & 
Niemi, D. (1996). Construct validation of an 
approach to modeling cognitive structure of U.S. 
history knowledge. Journal of Educational 
Research, 89, 206-218. 

 
Jensen, F. V. (2001). Bayesian networks and decision 

graphs. New York: Springer-Verlag. 
 
Lawson, A. E. (1987). Classroom test of scientific 

reasoning: Revised paper-pencil edition. Tempe, 
AZ: Arizona State University. 

 
McGuinness, D. L. (2003). Ontologies come of age. In 

D. Fensel, J. Hendler, H. Lieberman, & W. 
Wahlster (Eds.), The semantic web: Why, what, 
and how (pp. 171–191). Cambridge, MA: MIT 
Press. 

 
USMC. (2001). Rifle Marksmanship. USMC Reference 

Publication (MCRP) 3–01A. Washington, DC: 
U.S. Marine Corps. 


	ABSTRACT
	ABOUT THE AUTHORS
	CONTEXT OF STUDY
	Definition of an Ontology
	ONTOLOGIES TO SUPPORT ASSESSMENT AND INSTRUCTION
	Ontology of U.S. Marine Corps Rifle Marksmanship Knowledge

	ACKNOWLEDGEMENTS
	REFERENCES

