Federal

Science Panel Seeks Ways to Fan Student Innovation

By Sean Cavanagh — August 25, 2009 5 min read
  • Save to favorites
  • Print

Most schools have their share of math and science students who ace standardized tests, thrive during classroom discussions, and excel on independent research projects—who, in short, conquer every academic task thrown their way.

But how can schools produce more mathematics and science students with a distinct and harder-to-define skill: the ability to innovate and become future innovators in American business, science, medicine, and other areas?

That question is at the heart of work being conducted by a committee of the National Science Board, which is holding a series of discussions on the topic here this week. The goal of the board, which sets policy for the National Science Foundation, is to produce a series of policy recommendations by next year on how schools can produce more elite innovators in science, technology, engineering, and mathematics—known as the “STEM” fields for short.

Members of the expert committee said their final report will likely have to address several questions. What are the characteristics of an innovator—ability, interest, determination, curiosity, or all of those traits? What separates innovative ability from other, related skills, such as creativity? And can math and science classroom instruction and assessment in the United States realistically be revamped to nurture innovation among students?

Preparing for Economy

Educators and policymakers have become increasingly keen in recent years on providing new and different academic challenges for elite students. Some say U.S. schools tend to focus on raising the performance of low- and middle-performing students, at the expense of top-performers. Others argue the changes in the global economy make the ability to foster entrepreneurship and innovation more essential to the United States’ prosperity than ever before.

“Our economy has changed,” said Camilla P. Benbow, a science-board member who helped guide the committee’s discussion yesterday. “It’s a highly technological, knowledge-based economy,” she said, which increasingly values “an educated workforce and the individuals who can create innovations.”

“Innovators are a bit of a different breed,” Ms. Benbow added. A central charge for the committee, she said, is to examine, “What are their needs? What should our education system be doing to meet those needs?”

The committee will likely submit a white paper to the full National Science Board by spring, said Ms. Benbow, the dean of the Peabody College of Education and Human Development at Vanderbilt University, in Nashville, Tenn. Its recommendations will be directed to the NSF, she said, and potentially also to the entire federal government.

Several speakers at the science board’s forum suggested that K-12 math and science lessons in U.S. classrooms do not place enough emphasis on the skills that generate innovative ability.

David Lubinski, a psychology professor at Vanderbilt’s Peabody College, told the committee that lessons tend to emphasize verbal and quantitative ability, rather than spatial skill that can prove crucial to innovation in engineering and the physical sciences. Schools could build spatial skills by promoting student activities and projects in areas such as robotics and through lab lessons in the physical sciences, Mr. Lubinski argued.

Compared with other countries, a fairly strong percentage of U.S. economic growth is based in industries rooted in creative and innovative industries, said R. Keith Sawyer, an associate professor of education at Washington University in St. Louis, who also addressed the committee. “We’re absolutely doing something right” in promoting innovation, he said.

Yet using the U.S. education system to build those skills will not be easy, Mr. Sawyer said, because so little is known about how to measure that talent among students.

“We don’t have good research on how to test creativity and deeper conceptual knowledge,” he said.

American science teachers could do more to spark innovation and general interest in the subject by fostering in-class discussions about scientific questions that have not yet been answered, said Robert Root-Bernstein, a professor of physiology at Michigan State University, in East Lansing. An effective teacher can use scientific unknowns to generate excitement and curiosity among students and help students ask scientific questions, he said.

“You shouldn’t be a teacher if you can’t say, ‘I don’t know,’ ” Mr. Root-Bernstein said, adding that teachers need to follow up by saying, “Let’s find out.”

Students also would be more inspired to think as innovators if they saw more descriptions of “real stories about real innovators” in science textbooks, added Mr. Root-Bernstein. Over the past century, he said, a common characteristic of many of the world’s top innovators has been that they received a broad-based education.

“They learned to become learners, first of all,” he said, “and learned how to do it in an extremely disciplined way.”

Many of those scientists also took a strong interest in arts, music, and other pursuits far removed from math and science, said Mr. Root-Bernstein, who has studied the academic training of many of those individuals.

Student Passion

In addition to hearing from scholars, the committee sought advice from others with relevant expertise: top-performing high school and college students. Five students were asked to speak about the factors that inspired their passion for math and science.

Some said they were hooked by having taken part in academic competitions, which challenged them in different ways from their traditional classes. One student said the spark came in a subtle way—from reading the science magazines her parents subscribed to at home. And several spoke favorably of math and science magnet programs, which put them in the company of peers with similar talents and interests.

One of the panelists, Louis Wasserman, 18, argued that schools overlook the power they have to inspire students by daring them to become in-class inventors. Mr. Wasserman, who now attends the University of Chicago, recalled the thrill he felt as a student while devising innovations that he was certain were original. “I was frequently misguided,” he said, to laughter from the audience.

No matter.

“Students get excited about creating new things—it doesn’t matter if it’s actually new,” Mr. Wasserman said. The “joy of creating something,” he said, is “extraordinary.”

Related Tags:

A version of this article appeared in the September 02, 2009 edition of Education Week

Events

This content is provided by our sponsor. It is not written by and does not necessarily reflect the views of Education Week's editorial staff.
Sponsor
Student Achievement Webinar
How To Tackle The Biggest Hurdles To Effective Tutoring
Learn how districts overcome the three biggest challenges to implementing high-impact tutoring with fidelity: time, talent, and funding.
Content provided by Saga Education
This content is provided by our sponsor. It is not written by and does not necessarily reflect the views of Education Week's editorial staff.
Sponsor
Student Well-Being Webinar
Reframing Behavior: Neuroscience-Based Practices for Positive Support
Reframing Behavior helps teachers see the “why” of behavior through a neuroscience lens and provides practices that fit into a school day.
Content provided by Crisis Prevention Institute
This content is provided by our sponsor. It is not written by and does not necessarily reflect the views of Education Week's editorial staff.
Sponsor
Mathematics Webinar
Math for All: Strategies for Inclusive Instruction and Student Success
Looking for ways to make math matter for all your students? Gain strategies that help them make the connection as well as the grade.
Content provided by NMSI

EdWeek Top School Jobs

Teacher Jobs
Search over ten thousand teaching jobs nationwide — elementary, middle, high school and more.
View Jobs
Principal Jobs
Find hundreds of jobs for principals, assistant principals, and other school leadership roles.
View Jobs
Administrator Jobs
Over a thousand district-level jobs: superintendents, directors, more.
View Jobs
Support Staff Jobs
Search thousands of jobs, from paraprofessionals to counselors and more.
View Jobs

Read Next

Federal Opinion 'Jargon' and 'Fads': Departing IES Chief on State of Ed. Research
Better writing, timelier publication, and more focused research centers can help improve the field, Mark Schneider says.
7 min read
Image shows a multi-tailed arrow hitting the bullseye of a target.
DigitalVision Vectors/Getty
Federal Electric School Buses Get a Boost From New State and Federal Policies
New federal standards for emissions could accelerate the push to produce buses that run on clean energy.
3 min read
Stockton Unified School District's new electric bus fleet reduces over 120,000 pounds of carbon emissions and leverages The Mobility House's smart charging and energy management system.
A new rule from the Environmental Protection Agency sets higher fuel efficiency standards for heavy-duty vehicles. By 2032, it projects, 40 percent of new medium heavy-duty vehicles, including school buses, will be electric.
Business Wire via AP
Federal What Would Happen to K-12 in a 2nd Trump Term? A Detailed Policy Agenda Offers Clues
A conservative policy agenda could offer the clearest view yet of K-12 education in a second Trump term.
8 min read
Republican presidential candidate and former President Donald Trump speaks at a campaign rally, March 9, 2024, in Rome Ga.
Former President Donald Trump speaks at a campaign rally, March 9, 2024, in Rome, Ga. Allies of the former president have assembled a detailed policy agenda for every corner of the federal government with the idea that it would be ready for a conservative president to use at the start of a new term next year.
Mike Stewart/AP
Federal Opinion Student Literacy Rates Are Concerning. How Can We Turn This Around?
The ranking Republican senator on the education committee wants to hear from educators and families about making improvements.
6 min read
Image shows a multi-tailed arrow hitting the bullseye of a target.
DigitalVision Vectors/Getty