Published Online:
Published in Print: November 7, 2001, as Getting a Clue

Commentary

Getting a Clue

It's time for educators, administrators, and business leaders to start a revolution in science teaching and learning.

Article Tools
  • PrintPrinter-Friendly
  • EmailEmail Article
  • ReprintReprints
  • CommentsComments
It's time for educators, administrators, and business leaders to start a revolution in science teaching and learning.

When Daniel Goldin announced last month that he was stepping down after a decade heading the National Aeronautics and Space Administration, the news recalled a dire assessment he once made. The respected NASA administrator had pronounced himself "scared to death" by one development in his field. Was it the possibility of another Challenger-like disaster? The threat of cuts in NASA's budget? The potential for astronaut-cosmonaut conflict on the international space station? No, it was none of these. What had Mr. Goldin shaking in his boots, he said, was simply this: Kids don't like science.

Mr. Goldin and other leaders in our technology-driven economy are looking into the future, and what they don't see scares them. The future will likely lack an adequate supply of scientists.

It is evident that American students are not excited about science. Our graduate programs in science and engineering are not filled with bright young Americans, but rather bright young international students. Well before graduate school, though, American students' lack of science interest and expertise is evidenced by routine lackluster performances on international assessments. What is America to do?

In some ways, the answer is embarrassingly simple: To increase science learning, give students a reason to want to learn science.

Science educators must help students make the connections between science and the world in which they live.

If adults were honest, most would have to admit that they still do not understand why they had to memorize the genus and species of various farm animals. Or why they were made to draw pictures of DNA. Or what wasthe point of that fruit-fly film they were forced to watch in the 10th grade? For many adults, science education is synonymous with passive learning and memorization. It is no wonder that most adults have forgotten nearly all they ever learned in science class; they never understood what any of it had to do with "real life."

We don't just need more science education in this country; we need a revolution in the way we teach science. Our goal for science education should be to teach sound science that will "stick." Specifically, science educators must help students make the connections between science and the world in which they live—science for real life.

Inquiry-based learning takes the students from the audience and places them in a starring role in the science classroom. The best inquiry-based learning guides a student's natural curiosity through a process of investigation and discovery while making science relevant to students.

The power of this kind of learning was evident at last year's Discovery Young Scientist Challenge. Many of the student finalists in this national middle school competition talked about how their interest in science grew out of something in their "real lives." One student's love of horses led her to design an experiment to discover a better method for estimating her horse's weight. Another student's partial hearing loss led her to investigate the structure of the human ear to discover if the role that ossicular bones play in hearing can be simulated by other means. Last year's winner became interested in genetics after witnessing her own mother's struggle with a genetic eye disease. When science is practical, science is memorable and dynamic.

This can be seen clearly in the new "Dino Stars" exhibit at the New York Institute of Technology's Center for Science Teaching and Learning, which I direct. What makes the exhibition so exciting is that students are not just visitors, they are critical participants in making the exhibits work. The inquiry-based design allows the questions generated by students to shape their experience of the exhibits. While we are excited about the potential for this museum, we know that inquiry-based learning must ultimately find its way to the classroom to make large-scale changes in science achievement in the United States.


So why isn't this kind of science thriving in our schools? Many educators hesitate to change the way we conduct science education in this country. What we hear most frequently is the following: We're willing to use new methods to engage our students in science, but we still have to ensure that they take and pass their standardized tests. ... How can we possibly do both?

The assumption that inquiry teaching does not prepare children for tests is flawed.

While the concern that many teachers feel to prepare their students for their required examinations is very real, the underlying assumption that inquiry teaching does not prepare children for tests is flawed. The truth is, the same information that is taught through traditional methods can be taught—often more effectively—through inquiry-based learning.

Changing from the old way of doing things to a new way isn't as easy as flipping a switch. Teachers must be given the resources they need to learn and implement inquiry- based learning strategies. Those who train teachers (colleges) and those who employ teachers (school districts) must recognize the need for change and begin training—and retraining—teachers in inquiry-based teaching techniques and teach them how to immediately integrate these techniques into their classrooms. Business leaders, who complain about the lack of workers with high-level critical-thinking skills, must partner with schools and colleges to help with the effort. There are many examples of successful partnerships. Companies have given colleges of education access to their distance-learning technologies to facilitate professional development opportunities for teachers, for example. These models need to expand and increase to reach more teachers.

American students can lead the world in science excellence. But it won't happen until we make serious changes in the way that we teach science. It's time for educators, administrators, and business leaders to start a revolution in science teaching and learning.

Ray Ann D. Havasy is the director of the Center for Science Teaching and Learning at New York Institute of Technology's school of education and a senior consultant to the Discovery Young Scientists Challenge.

Vol. 21, Issue 10, Page 49

Related Stories
Web Resources
You must be logged in to leave a comment. Login |  Register
Ground Rules for Posting
We encourage lively debate, but please be respectful of others. Profanity and personal attacks are prohibited. By commenting, you are agreeing to abide by our user agreement.
All comments are public.

Back to Top Back to Top

Most Popular Stories

Viewed

Emailed

Commented